Package: DBR 1.4.1
DBR: Discrete Beta Regression
Bayesian Beta Regression, adapted for bounded discrete responses, commonly seen in survey responses. Estimation is done via Markov Chain Monte Carlo sampling, using a Gibbs wrapper around univariate slice sampler (Neal (2003) <doi:10.1214/aos/1056562461>), as implemented in the R package MfUSampler (Mahani and Sharabiani (2017) <doi:10.18637/jss.v078.c01>).
Authors:
DBR_1.4.1.tar.gz
DBR_1.4.1.zip(r-4.5)DBR_1.4.1.zip(r-4.4)DBR_1.4.1.zip(r-4.3)
DBR_1.4.1.tgz(r-4.4-any)DBR_1.4.1.tgz(r-4.3-any)
DBR_1.4.1.tar.gz(r-4.5-noble)DBR_1.4.1.tar.gz(r-4.4-noble)
DBR_1.4.1.tgz(r-4.4-emscripten)DBR_1.4.1.tgz(r-4.3-emscripten)
DBR.pdf |DBR.html✨
DBR/json (API)
# Install 'DBR' in R: |
install.packages('DBR', repos = c('https://asmahani.r-universe.dev', 'https://cloud.r-project.org')) |
- pain - Pain Data
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:457780458f. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 09 2024 |
R-4.5-win | OK | Dec 09 2024 |
R-4.5-linux | OK | Dec 09 2024 |
R-4.4-win | OK | Dec 09 2024 |
R-4.4-mac | OK | Dec 09 2024 |
R-4.3-win | OK | Dec 09 2024 |
R-4.3-mac | OK | Dec 09 2024 |
Exports:coda_wrapperdbrdbr.control
Dependencies:arscodadlmlatticeMfUSampler
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Utility function to call MCMC diagnostic functions in the coda package | coda_wrapper |
Discretised Beta Regression for Survey-Response Analysis | dbr dbr.control |
Pain Data | pain |
Predict method for Discretised Beta Regression Fits | predict.dbr |
Summary, print, plot and coef methods for Discretised Beta Regression Fits | coef.dbr plot.dbr print.dbr summary.dbr |