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Abstract

The question of whether to treat ratings data - often generated from survey responses
- as ordinal or numeric has received considerable attention over the years. Theoretical
arguments notwithstanding, when the number of response levels is high, practitioners of-
ten seek a numeric interpretation of the response variable and the effect of predictors on
‘mean’ response. While linear regression is a convenient option, its implicit assumptions
of unbounded response, strict linearity, and homoscedasticity are unrealistic, when ap-
plied to ratings responses. In this paper, we introduce the R package DBR for Discretised
Beta Regression analysis of ratings data. DBR implements an adaptation of beta regres-
sion with several enhancements. First, it handles the forward and backward mapping
between the observed range of responses and the standard range of the beta distribution
(from zero to one). Secondly, it accounts for the discrete nature of observations by using
cumulative-density terms in constructing the likelihood function. Thirdly, DBR repre-
sents extreme-value count inflation, often seen in survey responses, both in estimation
and prediction steps. Finally, by adopting a Bayesian framework using Markov Chain
Monte Carlo sampling for estimation, DBR benefits from robust estimation, credible-
interval calculation and prediction functionalities. To facilitate model interpretation, and
in addition to returning the standard coefficients in the internal beta regression model, a
second function summarises and visualises the nonlinear impact of each predictor on the
observed (ratings) outcome. We hope that the DBR R package offers a viable alternative
- based on realistic assumptions about the data generation process - for numeric analysis
of ratings data by practitioners.

Keywords: Discretised Beta Regression, Ordinal Regression, Likert, Bayesian, Markov Chain
Monte Carlo.
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1. Introduction
When analysing survey-response data, a key decision is whether the data should be treated
as nominal, ordinal or numeric. When there is no natural order in responses, the data should
clearly be treated as nominal. An example would be the type of lung cancer detected in
a patient. Choice models such as multinomial logit (Hasan, Wang, and Mahani 2016) and
probit are suitable for regression analysis of nominal response variables. If responses present
a natural order but do not carry a clear numeric interpretation (ordinal data), one can use
ordered logit and probit regression models (Goodrich, Gabry, Ali, and Brilleman 2018). An
example would be a patient’s degree of happiness in sending their child to school after a
prolonged period of remote learning.
The third type of survey response - referred to as ratings data - is similar to ordinal data,
but contains more levels. Examples of rating scales - used to elicit rating responses - are
numeric, Likert (average of multiple numeric responses), fully-anchored (numbers with as-
sociated, descriptive text) and adjectival (e.g. ‘poor’, ‘ok’, ‘good’ and ‘excellent’) (Harpe
2015). When it comes to ratings data, there has been considerable debate about whether the
responses should be treated as ordinal or numeric (Harpe 2015; Liddell and Kruschke 2018;
Jamieson 2004; Norman 2010; Kuzon, Urbanchek, and McCabe 1996; Armstrong 1981; Knapp
1990; Pell 2005; Carifio and Perla 2007, 2008). Numeric treatment of ratings data allows for
easier interpretation of regression coefficients, but has been shown to lead to inconsistent
results (Liddell and Kruschke 2018) when there are few levels. When dealing with many
levels, the numeric treatment has the advantage of consuming significantly fewer degrees of
freedom compared with ordinal regression, but the underlying assumptions of strict linearity,
unboundedness and homoscedasticity remain at odds with the nature of ratings data.
In this paper, we present the open-source DBR R package for Discretised Beta Regression
(DBR) analysis of ratings data. DBR offers a middle ground between linear regression - built
on a strict equidistant interpretation of the response scale - and ordinal regression with full
flexibility in partitioning a latent variable into sub-regions that are mapped to the observed,
discrete levels.
DBR is an adaptation of beta regression, following the specification of Ferrari and Cribari-Neto
(2004); Zeileis, Cribari-Neto, Grün, and Kos-midis (2010). It is similar to ordinal regression,
especially the ordered probit model, in that it maps a continuous, latent variable to the
observed discrete response by partitioning the range of the latent variable. However, DBR
has two important differences from ordered probit regression: 1- the underlying distribution is
assumed to be beta (with proper shift and scale factors applied) rather than normal, 2- cutoff
points in DBR are assumed to be halfway points between the observed values, rather being
estimated from data. (However, see the discussion of left and right buffers in Section 2.4)
This ensures that the number of model parameters does not scale linearly with the number
of levels in the ratings scale, thus reducing the risk of overfitting compared with ordinal
regression. Overall, this setup allows DBR to create a numeric yet realistic interpretation of
ratings data. (Note that ordinal regression in R can be done using the polr function in the
MASS package (Venables and Ripley 2002).)
DBR is similar to beta-binomial regression, which has also been recommended for the analysis
of ratings data (Najera-Zuloaga, Lee, and Arostegui 2018). There are differences, however:
first, rather than directly mapping responses to a discrete distribution (binomial or beta-
binomial), DBR follows the latent-variable approach in ordinal regression, which is more in line
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with our intuition about the process of response selection by survey respondents. Secondly,
the DBR software accounts for extreme-value count inflation using cumulative-density terms
in the log-likelihood function. (Note that beta-binomial regression in R is available via the
aod package (Lesnoff, M., Lancelot, and R. 2012), or the PROreg package (Najera-Zuloaga,
Lee, and Arostegui 2020).)
The mathematical framework of DBR is similar to that of Inflated Discrete Beta Regression
(IDBR) in Taverne and Lambert (2014), with three differences. First, DBR uses flexible
endpoints for cutting the beta distribution, while IDBR uses mass density in discrete space.
Secondly, DBR only applies regression (on covariates) to the mean response, while IDBR also
models the impact of covariates on the dispersion parameter and inflated response. Thirdly,
DBR uses a Gibbs wrapper around the univariate slice sampler (Neal 2003) as implemented
in the MfUSampler R package (Mahani and Sharabiani 2017), while IDBR uses Metropolis
sampling. Finally, it must also be noted that - to our knowledge - there is no open-source
software available for IDBR.
The rest of this paper is organised as follows. In Section 2, we present the mathematical
underpinnings of DBR. In Section 3, we illustrate the key features of DBR including model
training, prediction, diagnostics and interpretation. Section 4 offers discussion and concluding
remarks. System setup is captured in Appendix A.

2. The DBR Mathematical Framework
We begin this section with a brief review of beta regression. This is followed by changes
made to beta regression in DBR for adapting it to rating responses, namely the forward and
backward transformations, discretisation correction, and inflated extreme values. We end this
section with a brief overview of the Bayesian estimation framework used in DBR.

2.1. Overview of Beta Regression
The probability density function (PDF) for beta distribution is given by:

f(y; α, β) = Γ(α + β)
Γ(α) Γ(β) yα−1 (1 − y)β−1, (1a)

Γ(z) ≡
∫ ∞

0
uz−1e−udu. (1b)

where the random variable y is restricted to the interval [0, 1], α, β > 0 are the so-called shape
parameters of the distribution, and Γ(.) is the Gamma function, which is a generalisation
of the factorial function to real (and complex) numbers. For beta regression, we follow
Ferrari and Cribari-Neto (2004); Zeileis et al. (2010) by using the alternative, mean-precision
parameterisation of beta distribution:

f(y; µ, ϕ) = Γ(ϕ)
Γ(µ ϕ) Γ ((1 − µ) ϕ) yµ ϕ−1 (1 − y)(1−µ) ϕ−1 (2)

where the parameters µ (mean) and ϕ (precision) are linked to the shape parameters as
follows: {

µ = α
α+β (3a)

ϕ = α + β (3b)
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and reversely: {
α = µ ϕ (4a)
β = (1 − µ) ϕ (4b)

We also require that 0 < µ < 1 and ϕ > 0. The first and second moments of the distribution
can be expressed in terms of the mean and precision parameters:

E[y] = µ (5a)

VAR[y] = µ (1 − µ)
1 + ϕ

(5b)

We can see from the above that the model is heteroscedastic, i.e., the response variance is
reduced (approaching zero) - for a fixed precision parameter - as the mean approaches either
end of the (0, 1) range. This dispersion-compression at extreme ends of the response range is
consistent with our expectation.
With the above mean-precision specification in hand, we can set up beta regression by assum-
ing that the mean parameter - via a link function - is a linear function of model predictors,
x:

g(µ) = x⊤β, (6)

where g(.) could be a suitable function that maps (0, 1) to real line, e.g., the logit function,
g(u) = log(u/(1 − u)). Further flexibility can be achieved by making the precision parameter
a function of predictors, also via a suitable link function such as log. Note that the nonlinear
link function causes the first derivative of the mean response with respect to any explanatory
variable (or predictor), xk, to be non-constant, i.e.:

∂E[y]
∂xk

= βk
dg−1(z)

dz
|z=x⊤β (7)

2.2. Forward and Backward Transformation of the Response Variable

In most likelihood-based approaches to parameter estimation, we must evaluate the ‘loga-
rithm’ of the likelihood function, which in the case of DBR involves the PDF of the beta
distribution (Eq. 2). Note that setting y = 0 or y = 1 causes the PDF to become zero, and
hence its logarithm to become infinite. For this reason, we should only allow an open-ended
interval for y, i.e., we require y ∈ (0, 1). Therefore, the first step towards adapting beta
regression for DBR is to map the raw data to the (0, 1) range.
Consider K unique response values, sorted in increasing order: y1 < · · · < yK . A naive
transformation could be:

zk = yk − y1
yK − y1

. (8)

But the above would map to [0, 1], rather than to (0, 1). Instead, we introduce left (bl) and
right (br) buffers:

bl ≡ (y2 − y1)/2 (9a)
br ≡ (yK − yK−1)/2 (9b)
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We have essentially extended the ‘latent’ range of the data to y1 − bl on the left, and yK + br

on the right. This leads to the revised linear transformation:

y −→ z = u(y) ≡ y − δ

r
. (10)

where y ∈ {y1, . . . , yK}, and we have defined

δ ≡ y1 − bl (11a)
r ≡ yK − y1 + bl + br (11b)

It can be easily verified that the above transformation would map the data to the following
range:

bl/(yK − y1 + bl + br) ≤ u(y) ≤ (yK − y1 + bl)/(yK − y1 + bl + br) (12)

The above is what is needed for model training (i.e., regression). For prediction, we differen-
tiate between two modes: 1) we can generate ‘samples’ from the posterior predictive density,
or 2) we can provide a ‘point’ estimate that represents the expected average of the samples
in (1).
In sample prediction, we must apply a reverse transformation to map the beta-distribution
deviates to the observed range of outcome, followed by a discretisation step, in which we
report yk that is closest to the sample drawn from beta distribution according to the mean
and dispersion parameters provided by the regression model. Referring to this transformation
as u−1

s (.), we formally define it as

z −→ y = u−1
s (z) ≡ yk s.t. |r x̂ + δ − yk|≤ |r x̂ + δ − yk′ |, ∀k′ ∈ {1, . . . , K}. (13)

(Ties are theoretically possible given finite resolution of floating-point math on digital com-
puters, but rare cases can be handled by choosing the smallest of the (at most two) k’s.) The
point prediction is calculated as the average of many samples, generated per above.

2.3. Discretisation Correction

The discretisation process must be reflected in the likelihood function for estimation. In other
words, if we observe the value zk, we cannot be certain that the latent sample drawn from the
beta distribution - before discretisation - was zk, but only that it was between zk−1+zk

2 and
zk+zk+1

2 , when 1 < k < K. When k = 1, the left boundary is 0, and when k = K, the right
boundary is 1. We summarise the above by introducing boundary functions zl(.) and zr(.):

zl(yk) =
{

0 k = 1
u(yk−1)+u(yk)

2 1 < k ≤ K
(14)

and

zr(yk) =
{

u(yk)+u(yk+1)
2 1 ≤ k < K

1 k = K
(15)

Given the above, we assert that the contribution of a data point with response yk to the
likelihood is

P (y = yk) = F (zr(yk)) − F (zl(yk)) (16)
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where F (.) is the cumulative density function for beta distribution (Eq. 1a or 2), defined as:

F (x) =
∫ x

0
f(u) du. (17)

2.4. Handling Extreme Responses
Extreme response to survey questions is one of several known types of bias in survey data Furn-
ham (1986). For example, in some Likert scales, the observed proportion of 0’s and 10’s for
a 0-10 scale may be higher than 1’s and 9’s, respectively. Researchers have discussed reasons
for, impact of, and ways to handle, this bias (Meisenberg and Williams 2008; Greenleaf 1992).
Study-design considerations aside, one method for analysis of extreme responses is a mixture
model, similar to zero-inflated Poisson distribution (Lambert 1992). In the case of beta
distribution, we can modify Eq.16 as follows

P (y = yk) = (1 − πl − πr) {F (zr(yk)) − F (zl(yk))} +


πl k = 1
0 1 < k < K

πr k = K

(18)

The new parameters πl, πr are both probabilities, and thus must be between 0 and 1. In a
regression context, they can be both made to be linear functions of predictors, via a suitable
link function.
We take a different approach in DBR, however, and utilise the existing framework for handling
discretisation by allowing the left and right buffers, bl, br to be estimated from the data, rather
than being fixed according to Eqs. 9a and 9b.
Besides boundary values, extreme responses can also be observed for midpoint/neutral points
on a Likert scale. While the inflation/mixture-density approach of Eq. 18 can be deployed
for this case as well, we refrain from including it in our implementation of DBR due to
the increase in parameter count and hence risk of overfitting. Including a neutral point on
the Likert scale may encourage the respondent to take an easy way out, thus providing more
noise than information. Hence some practitioners have argued in favor of removing the neutral
options, e.g., by using an even number of levels instead of an odd number (Allen and Seaman
2007).

2.5. Bayesian Estimation
In DBR, we opt for a Bayesian framework, using Markov Chain Monte Carlo sampling for pos-
terior density estimation. This offers a few benefits over Maximum-Likelihood (ML) methods.
First, the uncertainty of parameter estimates - expressed in terms of ‘credible intervals’ - does
not reply on asymptotic arguments that may break down for small-data problems. Secondly,
the MCMC sampling offers better chances to escape local maxima, compared with greedy op-
timisation algorithms used in Maximum-Likelihood (ML) methods. Finally, Bayesian frame-
works allow users to express ‘prior’ beliefs in parameter values.
The conditional probability of observed responses is given by:

P (y|X; ϕ, fi, bl, br) =
N∏

n=1

{
F

(
zr(yk[n]; bl, br); g−1(fi⊤xn), ϕ

)
− F

(
zl(yk[n]; bl, br); g−1(fi⊤xn), ϕ

)}
(19)
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In the above, zl(y; bl, br) and zr(y; bl, br) are functions that map each observed response to
its left and right intervals over the (0, 1) scale that is the domain of the beta distribution,
g−1(fi⊤x) is the ‘mean function’, i.e., function that calculates the mean of the beta distribution
by forming the linear predictor fiT x, followed by the logistic function. From the above, we
obtain the following log-posterior:

(20)L(ϕ, fi, bl, br) = log
(
F

(
zr(yk[n]; bl, br); g−1(fi⊤xn), ϕ

)
− F

(
zl(yk[n]; bl, br); g−1(fi⊤xn), ϕ

))
+ Φ(ϕ) + B(fi) + Bl(bl) + Br(br)

where Φ(ϕ), B(fi), Bl(bl) and Br(br) are the log-prior functions specified for the precision
parameter of beta distribution (ϕ), coefficients for the mean parameters (β) and the left and
right buffers (bl, br), respectively. For results shown in this work, we use non-informative, flat
priors for all parameters (with conservative boundaries). When using left and/or right buffers
(see Section 2.2), the maximum allowed values for these buffers can be adjusted by the user
(see Section 3).
For MCMC-based parameter estimation, we use our MfUSampler R package (Mahani and
Sharabiani 2017). This software relies on a Gibbs wrapper around the univariate slice sam-
pler (Neal 2003). As said earlier, MCMC has the inherent advantage of being able to escape
local optima and finding the true global optimum, which is highly desirable for complex func-
tions such as seen in Eq. 20. (However, this is not guaranteed to happen in every problem.)
In addition, the fact that slice sampler is derivative-free provides further convenience for the
user as it removes the need to supply the log-posterior derivatives (e.g., the gradient vector
and the Hessian matrix).

3. Using the DBR Package
We begin this section with a brief introduction to the ’pain interference’ data used in the
examples. This is followed by an illustration and discussion of DBR features for model training
(dbr), MCMC diagnostics (plot), model prediction (predict), and model interpretation
(coef and summary). Table 1 offers a list of public functions in DBR and a brief description
of each one.

Function Name Description
dbr Model estimation (Bayesian, MCMC)
plot MCMC diagnostics (trace plots, density plots, log-posterior)
predict Model prediction (point, sample)
coef Coefficients of internal beta regression
summary Context-dependent pseudo-coefficients (plots and tables)
coda_wrapper Access MCMC diagnostic functions in coda, e.g., auto-

correlation, effective size, convergence tests
dbr.control Setting configuration parameters of dbr

Table 1: Public functions in DBR. Note that plot, predict, coef, and summary are generic
S3 methods that have been implemented for the dbr class.
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3.1. The Pain Interference Data

This data is based on a survey of nearly 10,000 patients in UK health clinics, conducted during
2010-2014, to assess the quality of care they received. After data filtering and consolidation,
we have 1,318 observations of three variables: (pain) severity, (pain) interference, and
age:

R> library("DBR")
R> data("pain")
R> summary(pain)

severity interference age
Min. : 0.000 Min. : 0.000 Min. : 6.0
1st Qu.: 5.000 1st Qu.: 5.286 1st Qu.:50.0
Median : 6.500 Median : 7.000 Median :61.0
Mean : 6.318 Mean : 6.584 Mean :59.6
3rd Qu.: 7.750 3rd Qu.: 8.286 3rd Qu.:71.0
Max. :10.000 Max. :10.000 Max. :96.0

Description of variables:

• Severity: Average of 4 responses, each on a 0-10 scale (11 levels). They measure patients’
perception of pain severity - over the 7 days leading up to the survey - at (1) its worst,
(2) at its least, (3) on average, and (4) ‘right now’.

• Interference: Average of 7 scores, each on a 0-10 scale (11 levels). These questions
measure - over the 7 days leading up to the survey - the level of interference of pain in
patient’s life along the following dimensions: (1) general activity, (2) mood, (3) walking
ability, (4) normal work (outside of home and housework), (5) relations with other
people, (6) sleep and (7) enjoyment of life.

• Age: Age of respondents, in years.

The severity and interference scores are examples of ratings data. While numeric in ap-
pearance, they are bounded (between 0 and 10) and have discrete values. For example, the
interference score can only assume values such as 0, 1/7, 2/7, ..., 10−2/7, 10−1/7, 10 (since it
is formed as average of 7 numbers, each an integer between 0 and 10). As a brief exploration
of the data, we review the pairwise scatterplots:

R> plot(pain)
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We observe a clear positive correlation between pain severity and pain interference scores,
confirmed via a Spearman correlation test:

R> cor.test(pain$severity, pain$interference, method = "spearman")

Spearman's rank correlation rho

data: pain$severity and pain$interference
S = 136306075, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.6427926

But the impact of age on pain interference is less clear. The Spearman test below indicates
a statistically-significant negative correlation between age and pain interference:

R> cor.test(pain$age, pain$interference, method = "spearman")

Spearman's rank correlation rho



10 Bayesian Discretised Beta Regression: The DBR R Package

data: pain$age and pain$interference
S = 417536805, p-value = 0.0006158
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
-0.09420837

In the examples that follow, we will predict pain interference (response variable) from pain
severity and age of respondents (predictors).

3.2. Model Training

The main function in the DBR package is dbr, which is used for model training. It follows
the standard conventions in R by using the first two slots for model formula, and a data
frame containing the training data, with column names matching the terms specified in the
formula. Taking advantage of default values for other function arguments, the simplest call
to dbr would be:

R> est_dbr_default <- dbr(
+ formula = interference ~ severity + age
+ , data = pain
+ )

One function argument in dbr is yunique, which contains the expected unique values of
the response variable. When left unspecified, this parameter is assumed to be equal to the
observed unique values of the response variable in data, as specified in the model formula.
While in many cases this is the desired behavior, in others it may not be. In our example,
we expect the response variable to cover a range of 0 to 10, in increments of 1/7. However,
as shown below, a few valid values are not present in the data:

R> setdiff(0:70, round(7 * sort(unique(pain$interference))))

[1] 2 3

In other words, values of 2/7 and 3/7 have not occurred in the training data. This could distort
the DBR algorithm’s calculation of cutpoints. To correct this, we will explicitly override the
yunique argument in the call to dbr.
The control argument of the dbr function includes other parameters for controlling the
training process, which can be set by calling the function dbr.control. The first two ar-
guments in this function, nsmp and nburnin, control the MCMC sampling process that is
used for Bayesian parameter estimation (see Section 3.3), while the last three parameters -
estimate_left_buffer, estimate_right_buffer and buffer_max - control the behavior of
the model with respect to the left and right buffers (see Section 2.2).
Examining the histogram of the interference score indicates the presence of inflated extreme
values at both left and right ends of the spectrum:

R> hist(
+ pain$interference, breaks = 100, xlab = "Interference"
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+ , main = "Histogram of Pain Interference Score"
+ )

Histogram of Pain Interference Score
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Hence, we will set both flags estimate_left_buffer and estimate_right_buffer to TRUE.
Given the above, we make the following modified call to dbr:

R> my.seed <- 0
R> set.seed(my.seed)
R> est_dbr_short <- dbr(
+ formula = interference ~ severity + age
+ , data = pain
+ , yunique = 0:70 / 7
+ , control = dbr.control(
+ estimate_left_buffer = TRUE
+ , estimate_right_buffer = TRUE
+ )
+ )

Note that, for reproducibility purposes, we set the random seed number to a predetermined
value prior to all function calls involving random number generation.
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3.3. MCMC Diagnostics

As mentioned in Section 2.5, we use Markov Chain Monte Carlo (MCMC) sampling for pa-
rameter estimation in a Bayesian context which, among other benefits, leads to consistent
quantification of uncertainty in parameter estimates. It is important to allow sufficient itera-
tions for MCMC chains to converge - i.e., become independent of the initial conditions - before
including the samples in parameter estimation. This is controlled by the nburnin parameter.
We also need to include sufficient samples, after the initial burn-in period, which is controlled
by the parameter nsmp (representing the total number of samples, including burn-in). The
default values for nsmp and nburnin are 100 and 50 samples, respectively. (In most real-world
settings, these numbers are too small.)

To decide if nburnin and nsmp are large enough or must be increased, we have various diag-
nostic tools at our disposal in the R package coda (Plummer, Best, Cowles, and Vines 2006).
The plot function in DBR provides a good starting point for MCMC diagnostics by produc-
ing two outputs: 1) Trace and density plots for each estimated parameter (after discarding
nburnin initial samples), using a call to the plot.mcmc function in the coda package, via the
plot function in the MfUSampler package; and 2) plot of log-likelihood by iteration.

R> plot(est_dbr_short)

50 60 70 80 90 100

4.
2

4.
4

4.
6

4.
8

5.
0

Iterations

Trace of left_buffer

4.0 4.5 5.0

0.
0

0.
4

0.
8

Density of left_buffer

N = 50   Bandwidth = 0.124

50 60 70 80 90 100

0.
4

0.
6

0.
8

Iterations

Trace of right_buffer

0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Density of right_buffer

N = 50   Bandwidth = 0.07453

50 60 70 80 90 100

2.
65

2.
75

2.
85

Iterations

Trace of precision

2.6 2.7 2.8 2.9

0
1

2
3

4
5

6

Density of precision

N = 50   Bandwidth = 0.02848

50 60 70 80 90 100

−
0.

35
−

0.
20

−
0.

05

Iterations

Trace of (Intercept)

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1

0
1

2
3

4
5

Density of (Intercept)

N = 50   Bandwidth = 0.04546

50 60 70 80 90 100

0.
26

0
0.

27
5

0.
29

0

Iterations

Trace of severity

0.25 0.26 0.27 0.28 0.29 0.30

0
20

40
60

Density of severity

N = 50   Bandwidth = 0.002693

50 60 70 80 90 100

−
0.

00
9

−
0.

00
7

−
0.

00
5

Iterations

Trace of age

−0.011 −0.009 −0.007 −0.005

0
10

0
30

0

Density of age

N = 50   Bandwidth = 0.0004389



Sharabiani, Mahani, Price and Bottle 13

0 20 40 60 80 100

−
54

00
−

53
00

−
52

00
−

51
00

−
50

00
−

49
00

iteration

lo
g−

lik
e

Trace plots show significant drift in parameter values after burn-in, a sign that the chain has
not converged. This can also be seen in the log-likelihood plot, where there is a significant
drift upwards in average values of the log-likelihood after the 50 initial samples. These two
observations suggest that we need to discard more samples as burn-in period to allow for the
MCMC chain to converge. Also, the autocorrelation evident in the trace plots suggests that
the effective sample size for model parameters is much smaller than the apparent number (50
samples after burn-in). We should therefore collect more samples after burn-in as well.

Given the above observations, we increase nsmp to 1000 and nburnin to 500 samples:

R> set.seed(my.seed)
R> est_dbr_long <- dbr(
+ formula = interference ~ severity + age
+ , data = pain
+ , yunique = 0:70 / 7
+ , control = dbr.control(
+ estimate_left_buffer = TRUE
+ , estimate_right_buffer = TRUE
+ , nsmp = 1000, nburnin = 500
+ )
+ )

Convergence is much better now:

R> plot(est_dbr_long)
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More formal convergence tests - available in the coda package - can be conducted using the
coda_wrapper function. The first argument should be the estimated DBR object, which
is returned bythe dbr function. The second argument, coda_function, must be a coda
diagnsotic function, whose first argument is an mcmc object. (This object is constructed
from the dbr object inside the utility function coda_wrapper.) Further arguments to the
coda_function can be passed using the ... slot. For example, the Geweke convergence
test (Geweke 1992) can be performed as follows:

R> coda_wrapper(est_dbr_long, coda::geweke.diag, frac1 = 0.15)

Fraction in 1st window = 0.15
Fraction in 2nd window = 0.5

left_buffer right_buffer precision (Intercept) severity
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-0.1198 -4.6094 -1.5803 1.5498 -0.9069
age

-1.3863

For a full list of MCMC diagnostics available in coda, see the package documentation at
https://cran.r-project.org/web/packages/coda/coda.pdf.

3.4. Model Prediction

Having arrived at a convergence MCMC chain resulting in stable coefficients, we now focus on
prediction capabilities of the DBR package. The package offers two prediction modes, point
prediction and sample prediction. The point prediction returns the expected - or mean -
response, which is a continuous value. This is achieved via a call to the predict function and
by setting the type argument to point:

R> set.seed(my.seed)
R> pred_point <- predict(est_dbr_long, newdata = pain, type = "point")
R> head(pred_point)

[1] 5.270857 4.758857 7.858857 5.012571 6.793429 3.746857

R> hist(pred_point, breaks = 100, col = "grey"
+ , xlab = "Pain Inteference"
+ , main = "Histogram of Point Predictions"
+ )

As we can see in the above histogram, the extreme-value inflation is not necessarily reflected in
the predicted mean responses. This is because the point prediction averages out the sample-
level dispersion from predictions. To see the full dispersion of predictions, we have to switch
to sample mode:

R> set.seed(my.seed)
R> pred_sample <- predict(est_dbr_long, newdata = pain)
R> hist(pred_sample, breaks = 100, col = "grey"
+ , xlab = "Pain Inteference"
+ , main = "Histogram of Sample Predictions"
+ )

The histogram of predictions in the sample mode resembles the observed data histogram
much more closely. This is can be formally tested using the Kolmogorov–Smirnov test:

R> ks.test(pred_sample, pain$interference)

Asymptotic two-sample Kolmogorov-Smirnov test

data: pred_sample and pain$interference
D = 0.034731, p-value = 0.08372
alternative hypothesis: two-sided

https://cran.r-project.org/web/packages/coda/coda.pdf
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We can see that the null hypothesis i.e., the predictive posterior and the training data have
the same probability distribution, cannot be rejected with 95% confidence.

3.5. Model Interpretation

DBR offers two ways to interpret, or explain, the fitted model, using the coef and summary
functions. coef returns a table of quantiles for the model coefficients, using the MCMC
samples collected during training. The values of the quantiles can be set using the prob
argument, with default value being c(0.025, 0.5, 0.975), which returns the median as
well as the symmetric 95% credible interval for each coefficient, as well as the precision and
the left and right buffer parameters.

R> coef(est_dbr_long, prob = c(0.05, 0.5, 0.95))

left_buffer right_buffer precision (Intercept) severity
5% 2.816840 0.4893287 2.555945 -0.5905511 0.2499705
50% 4.190474 0.6857060 2.726520 -0.3282158 0.2727203
95% 4.908693 0.9364807 2.849629 -0.1645590 0.2903637

age
5% -0.007901430
50% -0.006401699
95% -0.004398898

Examining the credible intervals indicates if the coefficients are significant, with a Bayesian
interpretation. In the above example, we observe that the coefficients for both severity and
age are significant at the 95% level.

While this information is helpful, the coefficients in DBR do not have an intuitive interpreta-
tion, due to the nonlinearities imposed by the beta distribution and the discretisation process.
In other words, each unit change in a given predictor or covariate does not produce a constant
change in the mean response in a DBR model. This is why we provide the summary function
for producing model ‘pseudo-coefficients’, i.e., plots of the relationship between a predictor
and the mean response, as a function of the value of the predictor, and conditioned on a fixed
set of values for the remaining predictors in the model (if any):

R> summary_dbr_long <- summary(est_dbr_long)
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The function argument context can be used to provide the baseline values of predictors. If
missing, the function defaults to using the first row of the training data. For example, in
the above plots, age is fixed at 44 years for the severity plot (left), and severity is fixed
at 4.25 for age plot (right). (The make_plot argument allows the user to switch on/off the
plots.)

The above plots reveal that, the dependence of mean predicted interference on age is very
close to linear, while severity has a noticeably nonlinear relationship with mean predicted
interference. This makes sense given that the impact of age - over the range of its observed
values in the training data - on mean response is restricted to a narrower range than severity.

The function also returns the dataframes and mean-predicted-response values - used in cre-
ating plots - for potential further analysis. For example, it is interesting to compare the
predictions of the DBR model against linear regression:

R> plot(summary_dbr_long$severity$X$severity, summary_dbr_long$severity$y
+ , xlab = "severity", ylab = "interference"
+ , main = "DBR vs. linear regression", type = "l"
+ , ylim = c(0, 10))
R> lines(
+ summary_dbr_long$severity$X$severity
+ , predict(
+ lm(interference ~ age + severity, pain)
+ , newdata = summary_dbr_long$severity$X
+ )
+ , col = "red", lty = 2
+ )
R> legend("topleft", legend = c("DBR", "linear regression")
+ , pch = rep(-1, 2), col = c("black", "red")
+ , lty = c(1, 2))
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As expected, the dependence of mean predicted interference score on severity score for linear
regression is a straight line, while the DBR model predicts a nonlinear relationship. In par-
ticular, we see a declining slope as the severity score approaches its maximum value of 10. We
also observe a lower predicted interference for zero severity, compared to the prediction from
the linear regression model, which is closer to the ideal outcome of zero predicted interference
for zero severity (no pain).

4. Discussion

We have presented the DBR R package - available on the Comprehensive R Archive Network
(CRAN) at https://cran.r-project.org/web/packages/DBR/index.html - for analysis of
ratings data using the discretised beta regression (DBR) analytical framework. DBR allows for
quantifying the impact of predictors on the response while relaxing the unrealistic assumptions
of fixed slope and variance, which are present in homoscedastic linear regression. Major
software components and use cases were presented using an example from pain-survey data.
For more details on the functions available in the DBR package, including their arguments
and output, please see the package documentation.
The Bayesian framework, along with Markov Chain Monte Carlo (MCMC) sampling for
estimation, offers several advantages (Kruschke and Liddell 2018; Liddell and Kruschke 2018),

https://cran.r-project.org/web/packages/DBR/index.html
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including robust credible-interval calculation without resorting to unrealistic assumptions
about the asymptotic behavior of the log-likelihood function. While MCMC can be time-
consuming for large datasets, and/or when many burn-in and sampling iterations are needed
for accurate estimation of model parameters, there are several techniques proposed in the
literature for speeding it up, such as in Mahani and Sharabiani (2015).
One future improvement is to take full advantage of the Bayesian framework by allowing for
users of the DBR R package to supply or select informative priors for regression parameters.
Another direction of future work is to add support in the software for inflated midpoint values
using the mixture framework described in Section 2.4. Embedding DBR in composite settings
such as multi-level and mixture models is another potential extension, which the Bayesian
framework adopted for DBR would naturally support.
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A. Setup

Below is the corresponding R session information.

R> sessionInfo()

R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats graphics grDevices utils datasets methods
[7] base

other attached packages:
[1] DBR_1.4.1

loaded via a namespace (and not attached):
[1] compiler_4.4.1 dlm_1.1-6 ars_0.7
[4] tools_4.4.1 coda_0.19-4.1 maketools_1.3.0
[7] buildtools_1.0.0 grid_4.4.1 knitr_1.48

[10] MfUSampler_1.1.0 xfun_0.46 sys_3.4.2
[13] lattice_0.22-6

https://www.stats.ox.ac.uk/pub/MASS4/
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