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Abstract

The R package sns implements Stochastic Newton Sampler (SNS), a Metropolis-
Hastings Monte Carlo Markov Chain algorithm where the proposal density function is
a multivariate Gaussian based on a local, second-order Taylor-series expansion of log-
density. The mean of the proposal function is the full Newton step in Newton-Raphson
optimization algorithm. Taking advantage of the local, multivariate geometry captured in
log-density Hessian allows SNS to be more efficient than univariate samplers, approaching
independent sampling as the density function increasingly resembles a multivariate Gaus-
sian. SNS requires the log-density Hessian to be negative-definite everywhere in order
to construct a valid proposal function. This property holds, or can be easily checked,
for many GLM-like models. When initial point is far from density peak, running SNS
in non-stochastic mode by taking the Newton step - augmented with line search - allows
the MCMC chain to converge to high-density areas faster. For high-dimensional prob-
lems, partitioning of state space into lower-dimensional subsets, and applying SNS to
the subsets within a Gibbs sampling framework can significantly improve the mixing of
SNS chains. In addition to the above strategies for improving convergence and mixing,
sns offers utilities for diagnostics and visualization, sample-based calculation of Bayesian
predictive posterior distributions, numerical differentiation, and log-density validation.

Keywords: monte carlo markov chain, metropolis-hastings, newton-raphson optimization,
negative-definite hessian, log-concavity.

1. Introduction

In most real-world applications of Monte Carlo Markov Chain (MCMC) sampling, the prob-
ability density function (PDF) being sampled is multidimensional. Univariate samplers such
as the slice sampler (Neal 2003) and adaptive rejection sampler (Gilks and Wild 1992) can
be embedded in the Gibbs sampling framework (Geman and Geman 1984) to sample from
multivariate PDFs (Mahani and Sharabiani 2015a). Univariate samplers generally have few
tuning parameters, making them ideal candidates for black-box MCMC software such as
JAGS (Plummer 2013) and OpenBUGS (Thomas, O’Hara, Ligges, and Sturtz 2006). How-
ever, they become less effective as PDF dimensionality rises and dimensions become more
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correlated (Girolami and Calderhead 2011). Therefore, development - and software imple-
mentation - of efficient, black-box multivariate MCMC algorithms is of great importance
to widespread application of probabilistic models in statistics and machine learning. Re-
cent theoretical (Girolami and Calderhead 2011; Hoffman and Gelman 2014) and software
development (Stan Development Team 2014) efforts to make multivariate samplers such as
Hamiltonian Monte Carlo (HMC) (Duane et al. 1987) more self-tuning and efficient can be
viewed in this light.
The R package sns implements Stochastic Newton Sampler (SNS), a Metropolis-Hastings
MCMC algorithm (Hastings 1970), where the proposal distribution is a locally-fitted multi-
variate Gaussian resulting from second-order Taylor series expansion of the log-density. In its
current implementation, SNS requires the log-density to be twice-diffenrentiable and globally
concave, or equivalently that its Hessian matrix be negative-definite everywhere. For many
Generalized Linear Models (GLMs) these conditions are satisfied (Gilks and Wild 1992),
and the invariance theorem of Section 2.3 allows Hessian negative-definiteness to be stud-
ied and proven in the much lower-dimensional space of linear predictors, rather than the
high-dimensional space of regression coefficients.
SNS has appeared in the literature under several variations and labels. Gamerman (1997)
extend Iterative Reweighted Least Squares (IRLS) - the primary estimation technique for
GLM models - to MCMC sampling by adding a Metropolis-Hastings step to it. Given that
IRLS is a close cousin of Newton-Raphson optimization, their method can be considered a
specialization of SNS for GLM models. Qi and Minka (2002) present what they call ‘Hessian-
based Metropolis-Hastings’ (HMH), which is nearly identical to SNS, but they do not address
the high-dimensional mixing problem, nor do they provide an open-source software imple-
mentation. More recently, the simplified Manifold Metropolis Adjusted Langevin Algorithm
(MMALA) proposed in Girolami and Calderhead (2011) is very similar to SNS with the addi-
tion of a tunable step size, or learning rate. The software accompanying their paper, however,
is written in MATLAB (MATLAB 2014). The R package sns, to our knowledge, is the first
open-source implemnentation of the SNS algorithm, including extensions for improving con-
vergence (rnd and nnr arguments) and mixing (part argument), diagnostic and visualization
methods (summary.sns and plot.sns), sample-based prediction (predict.sns), and numer-
ical differentiation using numDeriv package (Gilbert and Varadhan 2012).
The paper is organized as follows. In Section 2, we review the theoretical background for SNS,
including assessment of log-concavity and calculation of gradient and Hessian. In Section 3,
we discuss the implementation of SNS algorithm in the sns package, including facilities for
improving convergence and mixing, full Bayesian prediction, and numerical calculation of
PDF derivatives. Section 4 offers several examples to illustrate the usage of sns features, as
well as how SNS can be combined with other samplers. In Section 5 we study the performance
of SNS in comparison with a few other samplers. Finally, Section 6 provides a summary of
our work and a discussion of potential future research and development directions.

2. Theory

In this section, we provide a brief overview of Metropolis-Hastings algorithm and offer a
formal definition of the SNS proposal PDF. This is followed by a discussion of log-concavity
requirement as well as computation of gradient and Hessian, focusing on an important class
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of models, referred to as ‘exchangeable regression’ models (Section 2.3).

2.1. Metropolis-Hastings algorithm

In Metropolis-Hastings (MH) MCMC sampling of the PDF, p(z), we generate a sample z∗

from the proposal density function q(z|zτ ), where zτ is the current state. We then accept the
proposed state z∗ with probability A(z∗, zτ ), where:

A(z∗, zτ ) = min
(

1 ,
p(z∗)q(zτ |z∗)
p(zτ )q(z∗|zτ )

)
(1)

The MH transitions satisfy detailed balance:

p(zτ )q(z∗|zτ )A(z∗, zτ ) = min (p(zτ )q(z∗|zτ ) , p(z∗)q(zτ |z∗))
= min (p(z∗)q(zτ |z∗) , p(zτ )q(z∗|zτ ))
= p(z∗)q(zτ |z∗)A(zτ , z∗)

(2)

The detailed balance property ensures that p(z) is invariant under MH transitions. For a
discussion of ergodicity of MH algorithm, see Roberts and Rosenthal (1999).

2.2. SNS proposal density

SNS proposal density is a multivariate Gaussian fitted locally to the density being sampled,
using the second-order Taylor-series expansion of the log-density:

f(x) ≈ f(x0) + g(x0)⊤ (x− x0) + 1
2(x− x0)⊤ H(x0) (x− x0) (3)

where f : RK → R is the log-density, and g and H are the gradient vector and Hessian matrix
for f , respectively, with dimensions K and K ×K. Assuming that f is globally concave, the
above approximation is equivalent to fitting the following multivariate Gaussian (which we
refer to as F (x)) to the PDF:

F (x) = 1
(2π)K/2|Σ|1/2 exp

{
−1

2(x− µ)T Σ−1(x− µ)
}

(4)

By comparing Equations 3 and 4, we see that the precision matrix is the same as negative
Hessian: Σ−1 = −H(x0). The mean of the fitted Gaussian maximizes its log, and therefore:

µ = x0 −H−1(x0) g(x0) (5)

We can now formally define the (multivariate Gaussian) proposal density q(. |x) as:

q(. |x) = N (x−H−1(x) g(x) , −H−1(x)) (6)

Note that Equation 5 is simply the full Newton step (Nocedal and Wright 2006a). We can
therefore think of SNS as the stochastic counterpart of Newton-Raphson (NR) optimization.
In NR optimization, we select the mean of the fitted Gaussian as the next step, while in
SNS we draw a sample from the fitted Gaussian and apply MH test to accept or reject it.
Also, note that in the special case where the sampled PDF is Gaussian, f(x) is quadratic
and therefore the proposal function is identical to the sampled PDF. In this case A(z′, z) is
always equal to 1, implying an acceptance rate of 100%.
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Contrary to standard Metropolis variants with multivariate Gaussians centered on current
point (symmetric Gaussian proposal), SNS is an aggressive, non-local MCMC algorithm as it
seeks to construct a global, Gaussian approximation of the PDF. Therein lies both its strength
and its weakness. When the Gaussian approximation is sufficiently close to the true PDF,
this can lead to a nearly-uncorrelated chain of samples, with the extreme case of perfectly
uncorrelated samples for a multivariate Gaussian distribution. In such cases, SNS can be much
more efficient than univariate and multivariate alternatives, including Metropolis sampling
with symmetric Gaussian proposal. On the other hand, if the Gaussian approximation is poor,
there can be little overlap between the two, resulting in low acceptance rate and inefficient
sampling.
Our empirical observations indicate that, in exchangeable regression models SNS performs
best when the number of observations is large compared to the number of variables. Ap-
pendix C provides theoretical support for this observation in the special case of a univariate
log-density. The sns package contains the ‘state space partitioning’ strategy for improving
mixing for SNS in high-dimensional problems (Section 3.2). Performance of SNS vis-a-vis
other sampling techniques under various data regimes is further illustrated in Section 5.

2.3. Log-density concavity

Constructing a valid SNS proposal function (Eq. 6) requires the sampled log-density to be
twice-differentiable and concave. Equivalently, the Hessian of log-density must exist and
be negative definite. Many common probability distributions enjoy such property, perhaps
with suitable transformations of parameters. We refer the reader to Table 2 of Gilks and
Wild (1992) for a list of distributions and parameters that enjoy log-concavity. For Bayesian
problems where log-density is a sum of contributions from log-prior and log-likelihood terms,
it is sufficient for each term to be concave, since this property is additive.
An important application of the Bayesian framework is exchangeable regression models (Good
2002), where 1) log-likelihood is the sum of contributions from individual data points, and 2)
one or more parameters of a probability distribution are assumed to be (possibly nonlinear
functions of) the inner product of a vector covariates and a vector of coefficients, often referred
to as ‘linear predictors’. In such cases, log-density can be generically written in the following
form:

L(β1, . . . , βJ) =
N∑

n=1
fn(< x1

n, β1 >, . . . , < xJ
n, βJ >), (7)

where < a, b > is the inner product of vectors a and b, x1
n, . . . , xJ

n are the covariate vectors
1, . . . , J for the n’th observation, and β1, . . . , βJ are the vectors of coefficients corresponding
to J slots in the probability distributions fn(u1, . . . , uJ), n = 1, . . . , N . Typically, J equals 1
or 2, with a notable exception being the multinomial distribution, used in multi-class logistic
regression (Hasan, Zhiyu, and Mahani 2014), where J equals the number of classes.
A convenient property of the functional form in Eq. 7 is that the definiteness property of its
Hessian as a function of the high-dimensional state space of β:

β ≡ (β1,t, . . . , βJ,t)t, (8)

can be reduced to a much simpler problem, i.e. definiteness of the J-dimensional functions
fn is Eq. 7, for n = 1, . . . , N . This notion is formally captured in the following theorem:
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Theorem 1. If all fn’s in Equation 7 have negative-definite Hessians AND if at least one
of J matrices Xj ≡ (xj

1, . . . , xj
N )t is full rank, then L(β1, . . . , βJ) also has a negative-definite

Hessian.

Proof is provided in Appendix B. Reasoning about definiteness of a matrix in a one- or
two-dimensional space is much easier than doing so in a high-dimensional space, with dimen-
sionality being the sum of lengths, Kj , of coefficients or

∑
j Kj . In a typical problem, this can

sum be as large as 50 or 100. Theorem 1, on the other hand, means that for single-slot base
distributions fn(u), we must simply prove that f

′′
n (u) < 0, ∀n. For multi-slot distributions, we

can use Silvester’s criterion for negative-definiteness, requiring that leading principal minors
alternate between positive and negative (Gilbert 1991). In particular, for two-slot distribu-
tions, we require the diagonal elements to be negative while the determinant of the Hessian
must be positive. It must be noted that Theorem 1 offers a sufficient, but not necessary,
set of conditions. It is therefore possible for a log-density of the form shown in Eq. 7 to be
negative-definite without satisfying the set of conditions stated in the above theorem. The
log-density for heteroskedastic linear regression discussed in Section 4.4 is potentially one such
example.
In some cases, while the Hessian cannot be proven to be negative-definite, yet blocks within
the full Hessian have this property. In such cases, SNS can be combined with other, more
generic sampling algorithms such as slice sampler or HMC, all embedded in a Gibbs cycle.
The implementation would be similar to that of state space partitioning approach in sns
(Section 3.2), but replacing SNS with alternative samplers for Hessian subsets (or blocks) that
do not satisfy negative-definiteness. An example of this strategy, as well as the application
of Theorem 1 is provided in in Section 4.4.
In addition to the theoeretical support provided in Theorem 1, sns also contains a utility
function for empirical assessment of negative-definiteness for Hessian blocks. This feature is
described in Section 3.5, and illustrated in Section 4.4.

2.4. Calculation of gradient and Hessian

Deriving the expressions for the gradient vector and the Hessian matrix, and implementing
them as computer programs, can be tedious. For exchangeable regression models, we can
apply the chain rule of derivatives to log-density of Eq. 7 to express the high-dimensional gra-
dient and Hessian in terms of their low-dimensional counterparts for fn’s. The first derivative
of log-likelihood can be written as:

G(β) ≡ ∂L

∂β
= (( ∂L

∂β1 )t, . . . , ( ∂L

∂βJ
)t)t, (9)

where
( ∂L

∂βj )t ≡ ( ∂L

∂βj
1

, . . . ,
∂L

∂βj
Kj

). (10)

For second derivatives we have:

H(β) ≡ ∂2L

∂β2 =
[

∂2L

∂βj∂βj′

]
j,j′=1,...,J

, (11)



6 Stochastic Newton Sampler: The R Package sns

where we have defined H(β) in terms of J2 matrix blocks:

∂2L

∂βj∂βj′ ≡
[

∂L

∂βj
k∂βj′

k′

]
j=1,...,Kj ;j′=1,...,Kj′

(12)

Applying the chain rule to the log-likelihood function of Equation 7, we derive expressions for
its first and second derivatives as a function of the derivatives of the base functions f1, . . . , fN :

∂L

∂βj =
N∑

n=1

∂fn

∂βj =
N∑

n=1

∂fn

∂uj
xj

n = Xj,tgj , (13)

with
gj ≡ (∂f1

∂uj
, . . . ,

∂fN

∂uj
)t, (14)

and
Xj ≡ (xj

1, . . . , xj
N )t. (15)

Similarly, for the second derivative we have:

∂2L

∂βj∂βj′ =
N∑

n=1

∂2fn

∂βj∂βj′ =
N∑

n=1

∂2fn

∂uj∂uj′ (xj
n ⊗ xj′

n ) = Xj,thjj′Xj′
, (16)

where hjj′ is a diagonal matrix of size N with n’th diagonal element defined as:

hjj′
n ≡

∂2fn

∂uj∂uj′ (17)

We refer to the matrix form of the Equations 13 and 16 as ‘compact’ forms, and the explicit-
sum forms as ‘explicit’ forms. The expander functions in the R package RegressionFac-
tory (Mahani and Sharabiani 2015b) use the compact form to implement the high-dimensional
gradient and Hessian, while proof of Theorem 1 utilizes the explicit-sum form of Equation 16
(see Appendix B).
In addition to the expander framework discussed above, users can also utilize the numerical
differentiation facility of sns to circumvent the need for deriving analytical expressions for
gradient and Hessian. This is explained in Section 3.5, and illustrated using an example in
Section 4.4.

3. Software implementation and features
This section begins with an overview of functions included in sns. This is followed by a deep-
dive into facilities for improving convergence and mixing of MCMC chains in SNS, diagnostic
tools, and full Bayesian prediction. A discussion of capabilities for calculating and validatig
log-density derivatives concludes this section.
,

3.1. Overview
The workhorse of sns package is the sns function, responsible for implementation of MH
algorithm using the multivariate Gaussian proposal density described in Section 2.2. sns
implements the following steps:
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1. Evaluate the log-density function and its gradient and Hessian at xold: fold, gold, Hold.

2. Construct the multivariate Gaussian proposal function at q(.|xold) using Equation 6 and
x = xold.

3. Draw a sample xprop from q(.|xold), and evaluate logqprop = log(q(xprop|xold)).

4. Evaluate the log-density function and its gradient and Hessian at xprop: fprop, gprop, Hprop.

5. Construct the multivariate Gaussian proposal function at q(.|xprop) using Equation 6
and x = xprop, and evaluate logqold = log(q(xold|xprop)).

6. Calculate the ratio r = exp((fprop − fold) + (logqold − logqprop)).

7. If r ≥ 1 accept xprop: xnew ← xprop. Else, draw a random deviate s from a uniform
distribution over [0, 1). If s < r, then accept xprop: xnew ← xprop, else reject xprop:
xnew ← xold.

Fitting the multivariate Gaussian in steps 2 and 5 is done via calls to the private function
fitGaussian in the sns package. We use the functions dmvnorm and rmvnorm from pack-
age mvtnorm to calculate the log-density of, and draw samples from, multivariate Gaussian
proposal functions.
There are three important arguments in sns: rnd, part, and numderiv. rnd controls whether
the algorithm should run in stochastic or MCMC mode (which is the default choice), or in
non-stochastic or Newton-Raphson (NR) mode. part controls the state space partitioning
strategy. These two arguments and their roles are described in Section 3.2. numderiv de-
termines whether numerical differentiation must be used for calculating the gradient and/or
Hessian of log-density, and is discussed in Section 3.5.
sns.run is a wrapper around sns, and offers the following functionalities:

1. Convenience of generating multiple samples via repeated calls to sns. After the first
call, the Gaussian fit object (attached as attribute gfit in the returned value from
sns) is fed back to sns via argument gfit, in order to avoid unnecessary fitting of the
proposal function at current value.

2. Collecting diagnostic information such as log-probability time series, acceptance rate,
relative deviation from quadratic approximation (time series), and components of MH
test. These diagnostic measures are discussed in Section 3.3, and their use is illustrated
via examples in Section 4.

Note that, when SNS is part of a Gibbs cycle and used in conjunction with other samplers,
sns.run cannot be used since the conditional distribution that must be sampled from changes
in each iteration.
The generic methods summary.sns, plot.sns and predict.sns provide diagnostic, visual-
ization, and prediction capabilities. They are discussed in Sections 3.3 and 3.4, and illustrated
via examples in Section 4.

3.2. Improving convergence and mixing
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NR mode: Far from the distribution mode, the local multivariate Gaussian fit can be
severely different from the PDF, leading to small overlap between the two, low acceptance
rate and hence bad convergence. This can be overcome by spending the first few iterations in
non-stochastic or NR mode, where instead of drawing from the proposal function we simply
accept its mean as the next step. Rather than taking a full Newton step, we have implemented
line search (Nocedal and Wright 2006b) to ensure convergence to the PDF maximum. To use
sns in NR mode, users can set the argument rnd to FALSE. In NR mode, each iteration is
guaranteed to increase the log-density. Using the NR mode during the initial burn-in phase
is illustrated in Section 4. In sns.run, the argument nnr controls how many initial iterations
will be performed in NR mode.
State space partitioning: Even when near the PDF maximum, the fitted Gaussian can be
severely different from the PDF. This can happen if the PDF has a significant third derivative,
a phenomenon that we have observed for high-dimensional problems, especially when the
number of observations is small. To improve bad mixing in high dimensions, we use a strategy
which we refer to as ‘state space partitioning’, where state space is partitioned into disjoint
subsets and SNS is applied within each subset, wrapped in a Gibbs cycle. This functionality
is available via the part argument, which is a list containing the set of state space dimensions
belonging to each subset. Convenience functions sns.make.part and sns.check.part allow
users to easily create partition lists and check their validity, respectively.

3.3. Diagnostics

sns includes a rich set of diagnostics which can be accessed via functions summary.sns and
plot.sns. Some of these are generic measures applicable to all MCMC chains, some are
specific to MH-based MCMC algorithms, and some are even further specialized for SNS as
a particular flavor of MH. Where possible, we have used the library coda and adopted its
naming conventions, but opted to create and maintain an independent set of functions due
to their specialized and extended nature.
MCMC diagnostics: In summary.sns, we calculate the usual MCMC chain summaries
including mean, standard deviation, quantiles, and effective sample size. We also calculate a
sample-based p-value for each coordinate. In plot.sns we have log-density trace plot, state
vector trace plots, effective sample size by coordinate, state vector histograms, and state
vector autocorrelation plots.
MH diagnostics: In summary.sns, we calculate the acceptance rate of MH transition pro-
posals. If mh.diag flag is set to TRUE, all 4 components of the MH test (log.p, log.p.prop,
log.q and log.q.prop) for all iterations are returned as well.
SNS diagnostics: In summary.sns, we return reldev.mean (if sns.run was called with
mh.diag set to TRUE), defined as the average relative deviation of log-density change (with re-
spect to PDF maximum) from quadratic approximation (also constructed at PDF maximum).
The location of PDF maximum is extracted from the Gaussian fit in the last iteration under
NR mode. The higher this value, the more likely it is for the SNS to exhibit bad mixing.
This is illustrated in Section 4. For reldev.mean to be valid, the user must ensure that the
value of the argument nnr supplied to sns.run is sufficiently high to achieve convergence by
the end of NR phase. Note that this is generally unfeasible if SNS is part of a Gibbs cycle,
and used in conjunction with other samplers, as in this case the conditional distribution that
SNS samples from constantly from one iteration to the next.
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3.4. Full Bayesian prediction

The function predict.sns allows for full Bayesian prediction, using a sample-based represen-
tation of predictive posterior distribution. It accepts an arbitrary function of state vector as
argument fpred, and applies the function across all samples of state vector, supplied in the
first argument, which must be an output of sns.run. The core philosophy in full Bayesian
prediction is to postpone summarization of samples until the last step. For example, rather
than supplying the expected values of coefficients into a function, we supply the samples
and take the expected value after applying the function. Following this proper approach is
important because:

1. Mathematically, an arbitrary function is not commutable with the expected value op-
erator. Therefore, applying expected value early produces incorrect results.

2. For a similar reason, confidence intervals cannot be propagated through arbitrary func-
tions. Therefore, correct uncertainty measurement also requires a full Bayesian ap-
proach.

Note that fpred can be deterministic or stochastic. An example of the latter case is when
we need to generate samples from the predictive posterior distribution, and fpred generates
sample(s) from the conditional distribution p(ŷ|θ), where ŷ is a new observation (for which
we are seeking prediction) and θ represents the model parameters (can be a vector), for
which have used SNS to generate samples. This can be considered a special case of ancestral
sampling (Bishop 2006), applied to the following:

p(ŷ) =
∫

p(ŷ | θ) p(θ) dθ (18)

3.5. Calculation and validation of log-density derivatives

SNS requires log-density to be twice-differentiable and concave. The sns package offers a
numerical differentiation capability to circumvent the need to mathematically compute the
log-density gradient and Hessian, and to help users determine whether the log-density (likely)
satifies the twice-differentiability and concavity requirements.
The functions grad and hessian from numDeriv package (Gilbert and Varadhan 2012) are
used for numerical differentiation. Arguments numderiv, numderiv.method and numderiv.args
in the sns and sns.run functions control the usage and parameters of these functions. Users
have three choices with regards to log-density derivatives:

1. fghEval returns a list with elements f, g, and h for log-density, its gradient and its
Hessian, respectively. In this case, users must leave numderiv at the default of 0 (no
numerical differentiation).

2. fghEval returns a list with elements f (log-density) and g (gradient), and Hessian is
found through numerical differentiation by setting numderiv to 1.

3. fghEval returns the log-density only (no list), and both gradient and Hessian are cal-
culated numerically by setting numDeriv to 2.
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A slightly more efficient approach is to do ‘numerical augmentation’ of the log-density once,
outside sns, via the utility function sns.fghEval.numaug. Section 4.4 contains an example
of using numerical derivatives with SNS.

4. Using sns
In this section, we illustrate the core functionalities of sns as well as some of its advanced
features via 4 examples. Below is an overview of objectives in each example:

1. Example 1: basic use of sns.run and summary.sns, ideal behavior of SNS for multi-
variate Gaussian PDFs

2. Example 2: using SNS in random and non-random modes, full Bayesian prediction of
mean and actual response

3. Example 3: state space partitioning for high-dimensional PDFs

4. Example 4: log-concavity invariance theorem, expander framework for log-density deriva-
tives, log-density validation, numerical differentiation

Setup details such as platform, OS, and R and package versions can be found in Appendix A.
To maximize the reproducibility of results for each code segment, we repeatedly fix random
seeds throughout the paper (using set.seed() function).

4.1. Example 1: Multivariate Gaussian

First, we launch an R session and load the sns package as well mvtnorm (used for evaluating
the multivariate Gaussia log-density in logdensity.mvg). We also select a seed for rnadom
number generator:

R> library("sns")
R> library("mvtnorm")
R> my.seed <- 0

Using sns to sample from a multivariate Gaussian is a contrived, but pedagogical, exam-
ple. Since log-density for a multivariate Gaussian is quadratic, its second-order Taylor series
expansion is not approximate but exact. In other words, the proposal function becomes
location-independent, and equal to the sampled distribution. This means that 1) the MH
test is always accepted, and 2) consecutive samples are completely independent, and hence
the resulting chain is no longer Markovian. Of course, since we know how to sample from
multivariate Gaussian proposal functions, we might as well directly sample from the original
multivariate Gaussian distribution. (Hence, the pedagogical nature of this example.) To
utilize sns, we must first implement the log-density and its gradient and Hessian:

R> logdensity.mvg <- function(x, mu, isigsq) {
+ f <- dmvnorm(x = as.numeric(x),
+ mean = mu, sigma = solve(isigsq), log = TRUE)
+ g <- - isigsq %*% (x - mu)
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+ h <- -isigsq
+ return (list(f = f, g = g, h = h))
+ }

We now draw 500 samples from this log-desity, using pre-specified values for mu (mean vector)
and isigsq (inverse of the covariance matrix, or precision matrix) in a 3-dimensional state
space:

R> set.seed(my.seed)
R> K <- 3
R> mu <- runif(K, min = -0.5, max = +0.5)
R> isigsq <- matrix(runif(K*K, min = 0.1, max = 0.2), ncol = K)
R> isigsq <- 0.5*(isigsq + t(isigsq))
R> diag(isigsq) <- rep(0.5, K)
R> x.init <- rep(0.0, K)
R> x.smp <- sns.run(x.init, logdensity.mvg, niter = 500,
+ mh.diag = TRUE, mu = mu, isigsq = isigsq)

Next, we use the summary.sns function to view some of the diagnostics:

R> summary(x.smp)

Stochastic Newton Sampler (SNS)
state space dimensionality: 3
total iterations: 500

NR iterations: 10
burn-in iterations: 250
end iteration: 500
thinning interval: 1
sampling iterations (before thinning): 250

acceptance rate: 1
mean relative deviation from quadratic approx: 1.78e-14 % (post-burnin)

sample statistics:
(nominal sample size: 250)

mean sd ess 2.5% 50% 97.5% p-val
1 0.57253 1.59494 250.00000 -2.36784 0.50459 3.5979 0.728
2 -0.53319 1.53788 208.00143 -3.04709 -0.72523 2.9473 0.656
3 -0.10749 1.57054 250.00000 -2.96664 -0.18477 2.8688 0.896
summary of ess:

Min. 1st Qu. Median Mean 3rd Qu. Max.
208 229 250 236 250 250

As expected, the acceptance rate is 100%, and there is no deviation from quadratic approxi-
mation, for SNS sampling of a multivariate Gaussian.
In real-world applications, the Gaussian proposal function is only an approximation for the
sampled distribution (since log-density is not quadratic), creating the Markovian dependency
and less-than-perfect acceptance rate. We study one such example next.
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4.2. Example 2: Bayesian Poisson regression

Generalized Linear Models (GLMs) (Nelder and Baker 1972) are an important family of statis-
tical models with applications such as risk analysis (Sobehart et al. 2000), public health (Shara-
biani et al. 2011) and political science (Gelman and Hill 2007). GLMs can be extended to
incorporate data sparseness and heterogeneity via the Hierarchical Bayesian framework (Rossi
et al. 2005) or to account for repeated measurements and longitudinal data via Generalized
Linear Mixed Model (McCulloch 2006). With properly-chosen link functions, many GLMs are
known - or can be easily proven - to have globally-concave log-densities with negative-definite
Hessian matrices (Gilks and Wild 1992). As such, GLMs are excellent candidates for SNS.
Embedded in Bayesian frameworks, they continue to enjoy log-concavity assuming the same
property holds for prior terms, according to the Bayes’ rule and the invariance of concavity
under function addition.
In our second example, we illustrate how to apply sns to the log-likelihood of Poisson regres-
sion. As before, we start with constructing the log-density and its gradient and Hessian, this
time using the expander framework of RegressionFactory package(Mahani and Sharabiani
2015b):

R> loglike.poisson <- function(beta, X, y) {
+ regfac.expand.1par(beta, X = X, y = y,
+ fbase1 = fbase1.poisson.log)
+ }

Now we simulate data from the generative model:

R> set.seed(my.seed)
R> K <- 5
R> N <- 1000
R> X <- matrix(runif(N * K, -0.5, +0.5), ncol = K)
R> beta <- runif(K, -0.5, +0.5)
R> y <- rpois(N, exp(X %*% beta))

For reference, we do a maximum-likelihood (ML) estimation of the coefficients using glm
command:

R> beta.init <- rep(0.0, K)
R> beta.glm <- glm(y ~ X - 1, family = "poisson",
+ start = beta.init)$coefficients

As mentioned before, sns can be run in non-stochastic mode, which is equivalent to Newton-
Raphson optimization with line search. Results should be identical, or very close, to glm
results:

beta.glm beta.nr
X1 -0.1893137 -0.1893137
X2 -0.4131500 -0.4131500
X3 -0.1598832 -0.1598832
X4 -0.1304481 -0.1304481
X5 0.3434516 0.3434516
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R> beta.sns <- sns.run(beta.init, fghEval = loglike.poisson,
+ niter = 20, nnr = 20, X = X, y = y)
R> beta.nr <- beta.sns[20, ]
R> cbind(beta.glm, beta.nr)

The primary use-case for sns is not ML estimation, but rather MCMC sampling of the distri-
bution. To do this, we perform the first few iterations in non-stochastic mode (20 iterations
here), and then switch to stochastic mode for the remaining 180 iterations:

R> beta.smp <- sns.run(beta.init, loglike.poisson
+ , niter = 200, nnr = 20, mh.diag = TRUE, X = X, y = y)

Examining the log-density trace plot (Figure 1) shows an expected pattern: During non-
stochastic phase (left of vertical line) log-probability rises steadily while approaching the
peak. During MCMC sampling, on the other hand, PDF maximum forms an upper bound
for the MCMC movements, and the chain occasionally visits low-probability areas. The plot
is created using the following line:

R> plot(beta.smp, select = 1)

The plot.sns function offers 4 other types of plots, besides the log-density trace plot. See
package documentation for details. Further diagnostic information can be accessed via the
summary.sns function:

Stochastic Newton Sampler (SNS)
state space dimensionality: 5
total iterations: 200

NR iterations: 20
burn-in iterations: 100
end iteration: 200
thinning interval: 1
sampling iterations (before thinning): 100

acceptance rate: 0.98
mean relative deviation from quadratic approx: 0.282 % (post-burnin)

sample statistics:
(nominal sample size: 100)
mean sd ess 2.5% 50% 97.5% p-val

1 -0.191294 0.101788 100.000000 -0.399519 -0.183148 -0.0023 0.06 .
2 -0.416563 0.119709 100.000000 -0.648252 -0.426877 -0.1993 0.01 **
3 -0.152653 0.103663 100.000000 -0.340861 -0.148608 0.0497 0.14
4 -0.134873 0.107803 54.066600 -0.319464 -0.126089 0.0583 0.20
5 0.325324 0.089878 100.000000 0.176855 0.326557 0.5292 0.01 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary of ess:

Min. 1st Qu. Median Mean 3rd Qu. Max.
54.07 100.00 100.00 90.81 100.00 100.00
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Figure 1: Log-density trace plot for Poisson regression problem with K = 5 and N = 1000.
Vertical line separates non-stochastic mode (left, 20 iterations) from stochastic mode (right,
180 iterations).
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R> summary(beta.smp)

The summary.sns function discards the first half of the samples as burn-in by default, be-
fore calculating sample statistics and acceptance. This behavior can be controlled via the
argument nburnin. Arguments end and thin have behavior similar to their counterparts in
the as.mcmc function of coda package. We observe two numbers in the summary print-out:
Firstly, acceptance rate is less than 100%, contrary to the case with a multivariate Gaus-
sian PDF (example 1). Secondly, the mean relative deviation from quadratic approximation
(reldev.mean) is now non-zero, again reflecting non-Gaussianity of the poisson likelihood
PDF. The number (<1%) is still small, however, leading to high acceptance rate and good
mixing of the chain.
Next, we want to predict the response variable in Poisson regression model, given new values
of the explanatory variables. We distinguish between two types of prediction: 1) predicting
mean response, 2) generating samples from posterior predictive distribution. We illustrate
how to do both using the predict.sns function. We begin by implementing the mean
prediction function, which simply applies the inverse link function (exponential here) to the
linear predictor. (For better comparison between the two prediction modes, we increase
number of samples to 1000.)

R> beta.smp <- sns.run(beta.init, loglike.poisson,
+ niter = 1000, nnr = 20, mh.diag = TRUE, X = X, y = y)
R> predmean.poisson <- function(beta, Xnew) exp(Xnew %*% beta)

The following single line performs sample-based prediction of mean response (using X in lieu
of Xnew for code brevity):

R> ymean.new <- predict(beta.smp, predmean.poisson,
+ nburnin = 100, Xnew = X)

ymean.new is a matrix of N (1000) rows and niter - nburnin (900) columns. Each row
corresponds to an observation (one row of Xnew), and each column corresponds to a prediction
sample (one row of beta.smp after burn-in).
We can also generate samples from posterior predictive distribution as follows:

R> predsmp.poisson <- function(beta, Xnew)
+ rpois(nrow(Xnew), exp(Xnew %*% beta))
R> ysmp.new <- predict(beta.smp, predsmp.poisson
+ , nburnin = 100, Xnew = X)

Comparing prediction summaries is illuminating:

prediction sample statistics:
(nominal sample size: 900)
mean sd ess 2.5% 50% 97.5%

1 1.097131 0.055727 745.264732 0.993232 1.096894 1.2046
2 0.843732 0.054143 715.905103 0.743759 0.839696 0.9601
3 0.890312 0.048949 739.896961 0.797980 0.888058 0.9929
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4 0.870101 0.064002 900.000000 0.745485 0.871221 1.0004
5 0.788435 0.051432 900.000000 0.696831 0.784447 0.8981
6 1.452514 0.121211 814.557259 1.234916 1.441164 1.7091
...

R> summary(ymean.new)

prediction sample statistics:
(nominal sample size: 900)
mean sd ess 2.5% 50% 97.5%

1 1.06889 0.97678 900.00000 0.00000 1.00000 3
2 0.85222 0.92629 900.00000 0.00000 1.00000 3
3 0.88222 0.93475 900.00000 0.00000 1.00000 3
4 0.92444 0.94854 1020.54914 0.00000 1.00000 3
5 0.75778 0.87047 900.00000 0.00000 1.00000 3
6 1.48444 1.16530 900.00000 0.00000 1.00000 4
...

R> summary(ysmp.new)

In the limit of infinite samples, the mean predictions from the two methods will be equal,
and they are quite close based on 900 samples above. However, standard deviation of pre-
dictions is much larger for predsmp.poisson compared to predmean.poisson, as the former
combines the uncertainty of coefficient values (represented in the sd values for beta’s) with
the uncertainty of samples from Poisson distribution around the mean, i.e., the sd of Pois-
son distribution. Also note that, as expected, quantiles for predsmp.poisson are discrete
since predictions are discrete, while the quantiles for predmean.poisson are continuous as
predictions are continuous in this case.
As mentioned in Section 2.2, there are two important cases where the Gaussian proposal func-
tion used in SNS deviates significantly from the underlying PDF, resulting in poor mixing
of the MCMC chain. First, when sample size is small, and second when state space dimen-
sionlity is high. The first scenario is addressed in performance benchmarking experiments of
Section 5. Below we focus on SNS for high-dimensional PDFs.

4.3. Example 3: High-dimensional Bayesian Poisson regression

As discussed in Section 2.2, the multivariate Gaussian proposal in SNS tends to lose accuracy
as state space dimensionality rises, leading to poor mixing of the resulting MCMC chain.
Continuing with the Poisson regression example, we increase K from 5 to 100, while holding
N = 1000. To illustrate that the problem is not covergence but mixing, we explicitly use the
glm estimate (mode of PDF) as the initial value for the MCMC chain:

Stochastic Newton Sampler (SNS)
state space dimensionality: 100
total iterations: 100

NR iterations: 10
burn-in iterations: 50
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end iteration: 100
thinning interval: 1
sampling iterations (before thinning): 50

acceptance rate: 0.16
mean relative deviation from quadratic approx: 5.25 % (post-burnin)

sample statistics:
(nominal sample size: 50)

mean sd ess 2.5% 50% 97.5% p-val
1 -0.459896 0.064151 5.362324 -0.621051 -0.434840 -0.4053 0.02 *
2 0.215889 0.056858 32.204465 0.129271 0.204078 0.4094 0.02 *
3 0.240960 0.118550 11.351804 0.011089 0.255061 0.3838 0.08 .
4 -0.093720 0.124676 5.034361 -0.400974 -0.081198 0.0237 0.76
5 -0.031323 0.080152 5.981971 -0.108520 -0.046393 0.1001 0.60
6 0.492257 0.083493 15.843840 0.260353 0.518507 0.6285 0.02 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
...
summary of ess:

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.596 3.956 6.346 8.480 12.410 32.204

R> set.seed(my.seed)
R> K <- 100
R> X <- matrix(runif(N * K, -0.5, +0.5), ncol = K)
R> beta <- runif(K, -0.5, +0.5)
R> y <- rpois(N, exp(X %*% beta))
R> beta.init <- glm(y ~ X - 1, family = "poisson")$coefficients
R> beta.smp <- sns.run(beta.init, loglike.poisson,
+ niter = 100, nnr = 10, mh.diag = TRUE, X = X, y = y)
R> summary(beta.smp)

We see a significant drop in acceptance rate as well as effective sample sizes for the coefficients.
Also note that mean relative deviation from quadratic approximation is much larger than
the value for K = 5. To improve mixing, we use the ‘state space partitioning’ strategy
of sns, available via the part argument of sns and sns.run. This leads to SNS sampling
of subsets of state space wrapped in Gibbs cycles, with each subset being potentially much
lower-dimensional than the original, full space. This strategy can significantly improve mixing.
Below we use the function sns.make.part to partition the 100-dimensional state space into
10 subsets, each 10-dimensional:

Stochastic Newton Sampler (SNS)
state space dimensionality: 100
state space partitioning: 10 subsets
total iterations: 100

NR iterations: 10
burn-in iterations: 50
end iteration: 100
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thinning interval: 1
sampling iterations (before thinning): 50

acceptance rate: 0.944
sample statistics:

(nominal sample size: 50)
mean sd ess 2.5% 50% 97.5% p-val

1 -0.577345 0.095907 50.000000 -0.755301 -0.567751 -0.4085 0.02 *
2 0.262993 0.100192 18.418195 0.072602 0.257516 0.4128 0.04 *
3 0.256804 0.095982 50.000000 0.072147 0.270832 0.4498 0.02 *
4 -0.143442 0.102042 21.673953 -0.327718 -0.155412 0.0474 0.28
5 0.048772 0.115663 19.773821 -0.161601 0.060174 0.2294 0.68
6 0.415373 0.093859 50.000000 0.227355 0.422012 0.5652 0.02 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
...
summary of ess:

Min. 1st Qu. Median Mean 3rd Qu. Max.
8.049 24.524 50.000 41.667 50.000 215.828

R> beta.smp.part <- sns.run(beta.init, loglike.poisson,
+ niter = 100, nnr = 10, mh.diag = TRUE,
+ part = sns.make.part(K, 10), X = X, y = y)
R> summary(beta.smp.part)

Notice the improved acceptance rate as well as effective sample sizes. A comparison of log-
probability trace plots confirms better mixing after convergence to PDF mode (see Figure 2).

R> par(mfrow = c(1,2))
R> plot(beta.smp, select = 1)
R> plot(beta.smp.part, select = 1)

4.4. Example 4: Heteroskedastic linear regression

For our last example, we study MCMC sampling of log-likelihood for heteroskedastic linear
regression, where both mean and variance of probability distribution for response are depen-
dent on a set of covariates. We cover several advanced topics in this examples: 1) application
of invariance theorem (Section 2.3), 2) rapid construction of analytical functions for gradi-
ent and Hessian, 3) validation of log-density, 4) numerical calculation of derivatives, and 5)
combining SNS with other samplers in Gibbs framework. The model can be formally stated
as:

yi ∼ N (xt
iβ , ezt

iγ), (19)

where N (µ, σ2) is the normal distribution with mean µ and variance σ2, xi and zi are vectors
of covariates (explaining the mean and variance, respectively) for the i’th observation, yi is
the response variable for the i’th observation, and β and γ are vectors of coefficients for mean
and variance. From Eq. 19, we can construct the following log-likelihood function:
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Figure 2: Comparison of log-density trace plots for Bayesian Poisson regression with N = 1000
and K = 100, without (left) and with (right) state space partitioning using 10 subsets.
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R> loglike.linreg.het <- function(coeff, X, Z, y) {
+ K1 <- ncol(X)
+ K2 <- ncol(Z)
+ beta <- coeff[1:K1]
+ gamma <- coeff[K1 + 1:K2]
+
+ mu <- X %*% beta
+ sigma <- sqrt(exp(Z %*% gamma))
+ f <- sum(dnorm(y, mu, sigma, log = TRUE))
+
+ return (f)
+ }

Next, we simulate some data using the generative model:

R> set.seed(my.seed)
R> K1 <- 5
R> K2 <- 5
R> N <- 1000
R> X <- matrix(runif(N * K1, -0.5, +0.5), ncol = K1)
R> Z <- matrix(runif(N * K2, -0.5, +0.5), ncol = K2)
R> beta <- runif(K1, -0.5, +0.5)
R> gamma <- runif(K1, -0.5, +0.5)
R> mu <- X %*% beta
R> var <- exp(Z %*% gamma)
R> y <- rnorm(N, X %*% beta, sd = sqrt(var))

Before sampling from the log-density, we perform validation tests on it, using the utility
function sns.check.logdensity. For blocks parameter, we focus on full Hessian as well as
blocks corresponding to beta and gamma:

R> coeff.init <- rep(0.0, K1 + K2)
R> check.logdensity <- sns.check.logdensity(coeff.init, loglike.linreg.het
+ , X = X, Z = Z, y = y, dx = 1, nevals = 10
+ , blocks = list(1:(K1+K2), 1:K1, K1 + 1:K2))
R> check.logdensity

number of finite function evals: 10 (out of 10 )
recommended numderiv value: 2
is length of gradient vector correct? Yes
are dims of Hessian matrix correct? Yes
is numerical gradient finite? Yes
is numerical Hessian finite? Yes
is numeric Hessian (block) negative-definite? Yes Yes Yes

(In real applications, nevals must be increased to a number larger than 10.) The diagnostics
output indicates that 1) log-density outputs are dimensionally valid, 2) function, gradient,
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and Hessian are finite for all 100 points evaluated, and 3) log-density Hessian (and its specified
blocks) is negative definite for all points evaluated.
Since the log-density for this problem falls under the ‘exchangeable regression’ category, the
framework described in Section 2.3 can be applied for assessing concavity (Theorem 1) and
constructing the derivatives (Eqn. 13 and 16). The log-density defined by loglike.linreg.het
can be translated into the following expression for contribution of each data point towards
log-density (ignoring constant terms):

fi(µ, η) = −η

2 −
(µ− yi)2

2 e−η, (20)

where µ and η are the linear predictors which assume values xt
iβ and zt

iγ, respectively, for
observation i. According to Theorem 1, a sufficient condition for concavity of the log-density
is that the Hessian of fi’s are negative-definite, for i = 1, . . . , N , where N is the number of
observations. Differentiating Eq. 20 readily leads to the following expression for the Hessian:

hi = e−η

[
−1 µ− yi

µ− yi − (µ−yi)2

2

]
. (21)

While the diagonal elements of hi are both negative, indicating that β and γ blocks are
negative-definite, but the full Hessian cannot be proven to have the same property: According
to Silvester’s criterion for negative-definiteness, the second leading principal minor must be
positive ((−1)2 = 1). From Eq. 20, however, we see that

|hi| = −
(µ− yi)2

2 e−2η ≤ 0. (22)

The above result does not contradict the output of sns.check.logdensity: On the one hand,
Theorem 1 provides only a sufficient set of conditions. On the other hand, the emipirical
checks performed by the software are limited to a finite set of points in the state space, and
thus do not lead to any guarantees of negative definiteness everywhere.
While we can certainly try to sample from the full log-density using SNS, a safer option is
to break down the full state space into subspaces corresponding to β and γ, apply SNS to
each subspace, and wrap these two steps in a Gibbs cycle. This will work because we have
theoretical guarantee that the subspace Hessians are both negative-definite, as indicated by
the diagonal elements of hi’s. To construct the derivatives for these two state subspaces,
we can use the RegressionFactory expander framework in two ways: First, we can supply
the base function fbase2.gaussian.identity.log to regfac.expand.2par and extract the
subspace components from its output. This is easy to implement but is computationally
inefficient since gradient and Hessian for the full state space are calculated during sampling
from each subspace. Secondly, we can implement base functions for each subspace from
scratch. For brevity of presentation, we opt for the first approach here:

R> loglike.linreg.het.beta <- function(beta, gamma, X, Z, y) {
+ K1 <- length(beta)
+ ret <- regfac.expand.2par(c(beta, gamma), X, Z, y
+ , fbase2 = fbase2.gaussian.identity.log)
+ return (list(f = ret$f, g = ret$g[1:K1], h = ret$h[1:K1, 1:K1]))
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+ }
R> loglike.linreg.het.gamma <- function(gamma, beta, X, Z, y) {
+ K1 <- length(beta)
+ K2 <- length(gamma)
+ ret <- regfac.expand.2par(c(beta, gamma), X, Z, y
+ , fbase2 = fbase2.gaussian.identity.log)
+ return (list(f = ret$f, g = ret$g[K1 + 1:K2]
+ , h = ret$h[K1 + 1:K2, K1 + 1:K2]))
+ }

Having defined the subspace log-densities, we implement the Gibbs cycle:

beta beta.est
[1,] 0.1526770 -0.09880018
[2,] -0.4352875 -0.47242585
[3,] 0.1766124 -0.04998303
[4,] 0.2353717 0.17066671
[5,] -0.3887003 -0.37585728

gamma gamma.est
[1,] -0.4533454 -0.5014745
[2,] -0.3690897 -0.1871530
[3,] 0.3809564 0.4542628
[4,] 0.3397255 0.1992674
[5,] 0.3681427 0.2553118

R> nsmp <- 100
R> beta.iter <- rep(0.0, K1)
R> gamma.iter <- rep(0.0, K2)
R> beta.smp <- array(NA, dim = c(nsmp, K1))
R> gamma.smp <- array(NA, dim = c(nsmp, K1))
R> for (n in 1:nsmp) {
+ beta.iter <- sns(beta.iter, loglike.linreg.het.beta
+ , gamma = gamma.iter, X = X, Z = Z, y = y, rnd = nsmp>10)
+ gamma.iter <- sns(gamma.iter, loglike.linreg.het.gamma
+ , beta = beta.iter, X = X, Z = Z, y = y, rnd = nsmp>10)
+ beta.smp[n, ] <- beta.iter
+ gamma.smp [n, ] <- gamma.iter
+ }
R> beta.est <- colMeans(beta.smp[(nsmp/2+1):nsmp, ])
R> gamma.est <- colMeans(gamma.smp[(nsmp/2+1):nsmp, ])
R> cbind(beta, beta.est)
R> cbind(gamma, gamma.est)

In the above example, both β and γ subspaces are log-concave and thus we could use SNS
for sampling from both inside the Gibbs cycle. In some problems, we may need to combine
SNS with other samplers that do not require log-concavity. This is illustrated next, where
we use slice sampler for γ subspace, using the MfUSampler package (Mahani and Sharabiani
2015a).
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beta beta.est.mix
[1,] 0.1526770 -0.08863665
[2,] -0.4352875 -0.46655363
[3,] 0.1766124 -0.07171445
[4,] 0.2353717 0.16936696
[5,] -0.3887003 -0.37977834

gamma gamma.est.mix
[1,] -0.4533454 -0.5333982
[2,] -0.3690897 -0.1635436
[3,] 0.3809564 0.4676251
[4,] 0.3397255 0.1449590
[5,] 0.3681427 0.2867365

R> loglike.linreg.het.gamma.fonly <- function(gamma, beta, X, Z, y) {
+ return (regfac.expand.2par(c(beta, gamma), X, Z, y
+ , fbase2 = fbase2.gaussian.identity.log, fgh = 0))
+ }
R> beta.iter <- rep(0.0, K1)
R> gamma.iter <- rep(0.0, K2)
R> for (n in 1:nsmp) {
+ beta.iter <- sns(beta.iter, loglike.linreg.het.beta
+ , gamma = gamma.iter, X = X, Z = Z, y = y, rnd = nsmp>10)
+ gamma.iter <- MfU.Sample(gamma.iter, loglike.linreg.het.gamma.fonly
+ , beta = beta.iter, X = X, Z = Z, y = y)
+ beta.smp[n, ] <- beta.iter
+ gamma.smp [n, ] <- gamma.iter
+ }
R> beta.est.mix <- colMeans(beta.smp[(nsmp/2+1):nsmp, ])
R> gamma.est.mix <- colMeans(gamma.smp[(nsmp/2+1):nsmp, ])
R> cbind(beta, beta.est.mix)
R> cbind(gamma, gamma.est.mix)

Finally, we illustrate the use of numerical differentiation capabilities in sns, using the utility
function sns.check.logdensity. We switch back to using SNS with γ subspace, but use
loglike.linreg.het.gamma.fonly, and compute gradient and Hessian numerically, rather
than analytically. Rather than requesting log-density augmentation with numerical deriva-
tives to be performed once every iteration inside sns, we perform this once outside the loop,
using sns.fghEval.numaug:

beta beta.est.num
[1,] 0.1526770 -0.07477742
[2,] -0.4352875 -0.45562620
[3,] 0.1766124 -0.03789287
[4,] 0.2353717 0.18586668
[5,] -0.3887003 -0.35552663

gamma gamma.est.num
[1,] -0.4533454 -0.5125666
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[2,] -0.3690897 -0.2082897
[3,] 0.3809564 0.4838722
[4,] 0.3397255 0.1950549
[5,] 0.3681427 0.2607847

R> loglike.linreg.het.gamma.numaug <-
+ sns.fghEval.numaug(loglike.linreg.het.gamma.fonly, numderiv = 2)
R> beta.iter <- rep(0.0, K1)
R> gamma.iter <- rep(0.0, K2)
R> for (n in 1:nsmp) {
+ beta.iter <- sns(beta.iter, loglike.linreg.het.beta
+ , gamma = gamma.iter, X = X, Z = Z, y = y, rnd = nsmp>10)
+ gamma.iter <- sns(gamma.iter, loglike.linreg.het.gamma
+ , beta = beta.iter, X = X, Z = Z, y = y, rnd = nsmp>10)
+ beta.smp[n, ] <- beta.iter
+ gamma.smp [n, ] <- gamma.iter
+ }
R> beta.est.num <- colMeans(beta.smp[(nsmp/2+1):nsmp, ])
R> gamma.est.num <- colMeans(gamma.smp[(nsmp/2+1):nsmp, ])
R> cbind(beta, beta.est.num)
R> cbind(gamma, gamma.est.num)

5. Performance benchmarking
For log-densities with negative-definite Hessian, SNS can be an efficient MCMC algorithm. As
mentioned in Section 2.3, many members of the exponential family belong in this category.
In this section, we present some benchmarking results that help clarify the strengths and
weaknesses of SNS vis-a-vis other sampling techniques, and thus provide empirical guidance
for practitioners in choosing the right sampling algorithm for their problem.
In Table 1, we compare SNS against three alternative sampling algorithms: 1) univariate
slice sampler with stepout and shrinkage (Neal 2003) or ‘slicer’, 2) adaptive rejection sam-
pling (Gilks and Wild 1992) or ‘ARS’, which is another univariate sampler applicable to
log-concave distributions, and 3) adaptive Metropolis (Roberts and Rosenthal 2009) or ’AM’
using a multivariate Gaussian mixture proposal function. Performance is measured in ‘inde-
pendent samples per second’, which is simply effective sample size divided by CPU time. We
see that, for all three distributions studied - binomial, Poisson, and exponential - SNS achieves
the best performance among all samplers, for this set of parameters: 1000 observations, 10
variables, and negligible correlation structure in the design matrix.
As discussed before, we expect SNS performance to deteriorate for small data sizes where
deviation of sampled distribution from a Gaussian approximation is more significant. This
point is illustrated in Figure 3 (left panels), where the performance of SNS, slicer, and AM
are compared over a range of values for N (K = 10 and no correlation). We see that, while
for N > 200, SNS has a clear advantage, slicer and AM tend to perform better for smaller
data sets. Theoretical support for the univariate case is provided in Appendix C.
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Family (link) SNS Slicer ARS AM Speedup
Bernoulli (logit) Time (sec) 14.4 90.8 281.4 19.5

ESS 7935 9401 9659 1551
Independent Samples / sec 553 103 34 80 5.4x

Poisson (log) Time (sec) 13.9 73.1 264.6 15.4
ESS 6146 9523 9430 2514
Independent Samples / sec 444 130 36 164 2.7x

Exponential (log) Time (sec) 13.9 73.6 273.1 15.4
ESS 5890 9650 9574 2364
Independent Samples / sec 423 131 35 154 2.7x

Table 1: Performance comparison of SNS against 3 other sampling techniques, using different
probability distributions in a generalized linear model. In all cases, number of observations
(N) is 1000, number of variables (K) is 10, and 10,000 samples were collected. SNS =
stochastic Newton sampler; Slicer = univariate slice sampler with stepout and shrinkage;
ARS = adaptive rejection sampling; AM = adaptive Metropolis. R package MfUSampler
was used for Slicer and ARS, while SamplerCompare was used for AM. Effective sample size
(ESS) was calculated using the ‘Initial Sequence Estimators’ method (Thompson 2010). All
tuning parameters of samplers are at their default values in their respective packages.

We had also pointed out that a weakness of univariate samplers such as slicer is when the
sampled distribution exhibits strong correlations. This can be induced indirectly by increasing
correlation in the matrix of covariates. As seen in Figure 3 (right panels), SNS performs rather
steadily with increased correlation, while the performance of slicer and AM - particularly slicer
- degrade as correlation increases.
Based on our benchmarking results, we recommend that SNS be considered as a primary
MCMC sampling technique for log-concave distributions, moderate to large data, and partic-
ularly when significant correlation among covariates is suspected.

6. Discussion
In this paper we presented sns, an R package for Stochastic Newton Sampling of twice-
differentiable, log-concave PDFs, where a multivariate Gaussian resulting from second-order
Taylor series expansion of log-density is used as proposal function in a Metropolis-Hastings
framework. Using an initial non-stochastic mode, equivalent to Newton-Raphson optimization
with line search, allows the chain to rapidly converge to high-density areas, while ‘state space
partitioning’, Gibbs sampling of full state space wrapping SNS sampling of lower-dimensional
blocks, allows SNS to overcome mixing problems while sampling from high-dimensional PDFs.
There are several opportunities for further research and development, which we discuss below.
Beyond twice-differentiability and log-concavity: Current version of SNS requires the
log-density to be twice-differentiable and concave. In many real-world application, the pos-
terior PDF does not have a negative-definite Hessian, or it cannot be proven to have such
a property. In such cases, SNS would not be applicable to the entire PDF (but perhaps to
subspaces, as illustrated in Example 4). A potential solution is discussed in Geweke and
Tanizaki (2001) in the context of state-space models, where non-concave cases are handled by
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Figure 3: Impact of data size (left panels) and covariate correlation (right panels) on perfor-
mance of SNS, slicer, and AM for binomial, Poisson, and exponential regression log-densities.
Covariate vectors, forming rows of the covariate matrix (X), are sampled from multivariate
Gaussian dsitribution with .
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utilizing exponential and uniform proposal distributions. Convergence and mixing properties
of such extensions to general cases must be carefully studied.
An important situation where twice-differentiability is violated is in the presence of boundary
conditions. The current SNS algorithm assumes unconstrained state space. One way to deal
with constrained subspaces is, again, to mix and match SNS and other samplers within Gibbs
framework. For example, the slice sampler algorithm implemented in MfUSampler is capable
of dealing with boxed constraints. It can therefore be assigned to subspaces with constraints,
and the unconstrained subspaces can be handled by SNS. Further research is needed in order
to relax twice-differentiability and log-concavity requirements for SNS.
Implementation Efficiency: The majority of time during typical applications of MCMC
sampling is spent on evaluating the log-density and its derivatives. In particular, for Stochas-
tic Newton Sampler, computing the Hessian matrix is often the most time-consuming step,
which is O(N × K2) where N is the number of observations and K is the number of at-
tributes in a statistical model with i.i.d observations. In sns function, this step is performed
by user-supplied function fghEval. On the other hand, the sampling algorithm itself is com-
putationally dominated by O(K3) steps such as Cholesky factorization of the Hessian (inside
fitGaussian or rmvnorm). As long as K is much smaller than N , therefore, the end-to-end
process is dominated by fghEval. A notable exception will be applications with ‘wide data’
such as those encountered in DNA microarray analysis. Therefore, the best way to improve
the efficiency of SNS is for the user to supply a high-performance fghEval function to sns,
e.g., through compiled code, parallelization, etc.
Computational implications of subset size during state space partitioning require more at-
tention as well. In particular, the current implementation in sns calls the same underlying,
full-space fghEval function. This means within each subset, full Hessian is calculated, which
is computationally wasteful. This naive approach neutralizes a potential computational ad-
vantage of state space partitioning, i.e., reducing the cost of Hessian evaluation which goes up
quadratically with state space dimensionality. A more sophisticated approach would require
the user to supply a function and derivative evaluation routine that produces the deriva-
tives over state subspaces. Here, the tradeoff is between computational efficiency vs. a more
complex API for function evaluation, whose implementation for each problem would be the
responsibility of the user.
Also, more comprehensive analysis - theoretical and empirical - is needed to determine
when/how to partition the state space. The correlation structure of the state space might
need to be taken into account while assigning coordinates to subsets, as well as data dimen-
sions such as number of observations. Our preliminary, uni-dimensional analysis shows that
mixing improves with N1/2, where N is the number of independently-sampled observations
in a regression problem.

A. Setup
Below is the R session information used for this entire paper. Note that the sns package used
was built under R version 3.3.0.

R> sessionInfo()

R version 4.4.1 (2024-06-14)
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Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.1 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] MfUSampler_1.1.0 RegressionFactory_0.7.4 mvtnorm_1.3-1
[4] sns_1.2.2

loaded via a namespace (and not attached):
[1] compiler_4.4.1 dlm_1.1-6.1 ars_0.8
[4] tools_4.4.1 coda_0.19-4.1 maketools_1.3.0
[7] buildtools_1.0.0 grid_4.4.1 knitr_1.48

[10] xfun_0.47 numDeriv_2016.8-1.1 sys_3.4.2
[13] lattice_0.22-6

B. Invariance of Hessian definiteness under linear transformations

To prove negative-definiteness of H(β) (hereafter referred to as H for brevity), we seek to
prove that ptHp is negative for all non-zero p in R

∑
j

Kj

. We begin by decomposing p into
J subvectors of length Kj each:

p = (p1,t, . . . , pJ,t)t. (23)
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We now have:

ptHp =
J∑

j,j′=1
pj,t ∂2L

∂βj∂βj′ pj′ (24)

=
∑
j,j′

pj,t

(∑
n

∂2fn

∂uj∂uj′ . (xj
n ⊗ xj′

n )
)

pj′ (25)

=
∑

n

∑
j,j′

∂2fn

∂uj∂uj′ pj,t (xj
n ⊗ xj′

n ) pj′ (26)

If we define a set of new vectors qn as:

qn ≡
[
p1,tx1

n · · · pJ,txJ
n

]
, (27)

and use hn to denote the J-by-J Hessian of fn:

hn ≡ [hjj′
n ]j,j′=1,...,J , (28)

we can write:
ptHp =

∑
n

qt
n hn qn. (29)

Since all hn’s are assumed to be negative definite, all qt
n hn qn terms must be non-positive.

Therefore, ptHp can be non-negative only if all its terms are zero, which is possible only if all
qn’s are zero vectors. This, in turn, means we must have pj,txj

n = 0, ∀n, j. In other words,
we must have Xjpj = ∅, ∀ j. This means that all Xj ’s have non-singleton nullspaces and
therefore cannot be full-rank, which contradicts our assumption. Therefore, pT Hp must be
negative. This proves that H is negative definite.

C. SNS mixing and number of observations
Efficient mixing in SNS depends on absence of large changes to the mean and std of the
proposal function (relative to the std calculated at mode) as the chain moves within a few
std’s of the mode. To quantify this, we begin with the Taylor series expansion of log-density
around its mode µ0 (where f ′(µ0) = 0), this time keeping the third-order term as well (and
restricting our analysis to univariate case):

f(x) ≈ f(µ0)− 1
2τ0(x− µ0)2 + 1

6κ0(x− µ0)3, (30)

τ0 ≡ −f ′′(µ0) (31)
κ0 ≡ f ′′′(µ0) (32)

Applying the Newton step to the above formula, we can arrive at mean µ(x) and precision
τ(x) of the fitted Gaussian at x:

µ(x) = x− f ′(x)
f ′′(x) (33a)

= x−
−τ0(x− µ0) + 1

2κ(x− µ0)2

−τ0 + κ0(x− µ0) (33b)

τ(x) = τ0 + κ0(x− µ0) (33c)
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We now form the following dimensionless ratios, which we need to be much smaller than 1 in
order to have good mixing for MH-MGT:

|µ(x)− µ0| . τ0 ≪ 1 (34)
|τ(x)− τ0|/τ0 ≪ 1 (35)

when |x− µ0| . τ0 ∼ O(1). Some algebra shows that both these conditions are equivalent to:

η0 ≡ |κ0| . τ
−3/2
0 ≪ 1 (36)

In real-world applications, we are interested in efficient sampling from computationally-
expensive log-densities. In particular, statistical models often involve many independent
observations, each contributing an additive term to the log-likelihood function:

f(x) =
N∑

i=1
fi(x) (37)

We can therefore re-write equation (36) as:

η0 = |
N∑

i=1
f ′′′

i (x)| . [
N∑

i=1
f ′′

i (x)]−3/2 (38)

Assuming that individual terms in above equation remain bounded, we can easily see that

η0 ∼ O(N−1/2) (39)

We therefore arrive at the following rule of thumb: SNS becomes more efficient as the number
of observations in a log-likelihood function increases.
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