Title: | Multivariate-from-Univariate (MfU) MCMC Sampler |
---|---|
Description: | Convenience functions for multivariate MCMC using univariate samplers including: slice sampler with stepout and shrinkage (Neal (2003) <DOI:10.1214/aos/1056562461>), adaptive rejection sampler (Gilks and Wild (1992) <DOI:10.2307/2347565>), adaptive rejection Metropolis (Gilks et al (1995) <DOI:10.2307/2986138>), and univariate Metropolis with Gaussian proposal. |
Authors: | Alireza S. Mahani, Mansour T.A. Sharabiani |
Maintainer: | Alireza S. Mahani <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.1.0 |
Built: | 2024-11-03 04:11:26 UTC |
Source: | https://github.com/cran/MfUSampler |
Returns a list of all control parameters needed for univariate samplers. Parameter names (after removing the prefixes) are identical to those used in original packages / source code. To be used with multivariate distributions, all control parameters must have the same length as the dimensionality of state space, either as vectors or lists.
MfU.Control(n, slice.w=1, slice.m=Inf, slice.lower=-Inf, slice.upper=+Inf , ars.x=c(-4,1,4), ars.ns=100, ars.m=3, ars.emax=64, ars.lb=FALSE, ars.xlb=0 , ars.ub=FALSE, ars.xub=0, arms.indFunc = function(x) TRUE , unimet.sigma = 1.0)
MfU.Control(n, slice.w=1, slice.m=Inf, slice.lower=-Inf, slice.upper=+Inf , ars.x=c(-4,1,4), ars.ns=100, ars.m=3, ars.emax=64, ars.lb=FALSE, ars.xlb=0 , ars.ub=FALSE, ars.xub=0, arms.indFunc = function(x) TRUE , unimet.sigma = 1.0)
n |
Dimensionality of state space, corresponding to |
slice.w |
Size of the steps for creating slice sampler interval. |
slice.m |
Limit on stepout steps. |
slice.lower |
Lower bound on support of the distribution. |
slice.upper |
Upper bound on support of the distribution. |
ars.x |
A vector of starting points for each coordinate, over which log-density is defined. |
ars.ns |
Maximum number of points defining the hulls. |
ars.m |
Number of starting points. |
ars.emax |
Large value for which it is possible to compute an exponential. |
ars.lb |
Boolean indicating if there is a lower bound to the domain. |
ars.xlb |
Value of the lower bound. |
ars.ub |
Boolean indicating if there is an upper bound to the domain. |
ars.xub |
Value of the upper bound. |
arms.indFunc |
Indicator function of the convex support of the target density. |
unimet.sigma |
Standard deviation of Gaussian proposal. |
All arguments (aside from n
) supplied to MfU.Control
can be vectors (or in the case of ars.x
a list) of length n
, in which case they are kept unmodified. Alternatively, a single parameter can be passed into MfU.Control
, which is then expanded by the function into a vector/list of length n
by simple replication. Each element of the resulting vector/list is used for one of the n
visited coordinates during the univariate sampling cycles. Naming and description of arguments for each univariare sampler is kept in maximal consistency with original source codes / libraries.
A list with 4 elements, slice
, ars
, arms
, and unimet
, each containing elements of the same name as their corresponding arguments in the function call.
Alireza S. Mahani, Mansour T.A. Sharabiani
Gilks WR and Wild P (1992). Adaptive Rejection Sampling. Applied Statistics, 41, 337-348.
Gilks WR, Best NG, and Tan KKC (1995). Adaptive rejection Metropolis sampling within Gibbs sampling. Applied Statistics, 44, 455-472.
Mahani A.S and Sharabiani M.T.A. (2017). Multivariate-From-Univariate MCMC Sampler: The R Package MfUSampler. Journal of Statistical Software, Code Snippets, 78(1), 1-22. doi:10.18637/jss.v078.c01
Neal R.M. (2003). Slice Sampling. Annals of Statistics, 31, 705-767.
# default control a for 10-dimensional space mycontrol <- MfU.Control(10) # setting a lower bound of 0 for last coordinate mycontrol <- MfU.Control(10, slice.lower=c(rep(-Inf,9),0.0))
# default control a for 10-dimensional space mycontrol <- MfU.Control(10) # setting a lower bound of 0 for last coordinate mycontrol <- MfU.Control(10, slice.lower=c(rep(-Inf,9),0.0))
This function is an extended Gibbs wrapper around univariate samplers to allow for drawing samples from multivariate distributions. Four univariate samplers are currently available: 1) slice sample with stepout and shrinkage (Neal 2003, using Radford Neal's R
code from his homepage), and 2) adaptive rejection sampling (Gilks and Wild 1992, using ars
function from ars package), 3) adaptive rejection Metropolis (Gilks et al 1995, using arms
function from HI package), and 4) univariate Metropolis with Gaussian proposal. The wrapper performs a full cycle of univariate sampling steps, one coordinate at a time. In each step, the latest sample values obtained for other coordinates are used to form the conditional distributions.
MfU.Sample(x, f, uni.sampler = "slice", ... , control = MfU.Control(length(x))) MfU.Sample.Run(x, f, uni.sampler = c("slice", "ars", "arms", "unimet"), ... , control = MfU.Control(length(x)), nsmp = 10)
MfU.Sample(x, f, uni.sampler = "slice", ... , control = MfU.Control(length(x))) MfU.Sample.Run(x, f, uni.sampler = c("slice", "ars", "arms", "unimet"), ... , control = MfU.Control(length(x)), nsmp = 10)
x |
Initial value for the multivariate distribution. It must be a numeric vector. |
f |
The multivariate log-density to be sampled. For any of |
uni.sampler |
Name of univariate sampler to be used. Default is " |
... |
Other arguments to be passed to |
control |
List of parameters controlling the execution of univariate samplers. See |
nsmp |
Number of MCMC samples to generate in |
In the case of ARS, the wrapper is an exact implementation of Gibbs sampling (Geman and Geman 1984), while for the other 3 samplers the wrapper can be considered a generalization of Gibbs sampling, where instead of drawing a sample from each conditional distribution, we perform a state transition for which the conditional probability is an invariant distribution. The wrapper takes advantage of the fact that conditional distributions for each coordinate are simply proportional to the full joint distribution, with all other variables held constant, at their most recent sampled values. Note that ARS requires log-concavity of the conditional distributions. Log-concavity of the full multivariate distribution is sufficient but not necessary for univariate conditionals to be log-concave. Slice sampler (default option) is derivative-free, robust with respect to choice of tuning parameters, and can be applied to a wider collection of multivariate distributions as a drop-in method with good results. Multivariate samplers such as Metropolis (Bishop 2006) or Stochastic Newton Sampler (Mahani et al 2014) do not require our wrapper.
For MfU.Sample
, a vector of length length(x)
, representing a sample from the multivariate log-density f
; for MfU.Sample.Run
, an object of class "MfU"
, which is a matrix of sampled values, one sampler per row (nsmp
rows), with sampling time attached as attribute "t"
.
Alireza S. Mahani, Mansour T.A. Sharabiani
Bishop C.M. (2006). Pattern Recognition and Machine Learning. Springer New York.
Geman S. and Geman D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741.
Gilks W.R. and Wild P. (1992). Adaptive Rejection Sampling. Applied Statistics, 41, 337-348.
Gilks W.R., Best N.G., and Tan K.K.C. (1995) Adaptive rejection Metropolis sampling within Gibbs sampling. Applied Statistics, 44, 455-472.
Mahani A.S., Hasan A., Jiang M. and Sharabiani M.T.A. (2016). Stochastic Newton Sampler: The R Package sns. Journal of Statistical Software, Code Snippets, 74(2), 1-33. doi:10.18637/jss.v074.c02
Mahani A.S and Sharabiani M.T.A. (2017). Multivariate-From-Univariate MCMC Sampler: The R Package MfUSampler. Journal of Statistical Software, Code Snippets, 78(1), 1-22. doi:10.18637/jss.v078.c01
Neal R.M. (2003). Slice Sampling. Annals of Statistics, 31, 705-767.
z <- c(1, 4, 7, 10, 13, 16, 19, 24) m1.prior <- c(17, 26, 39, 27, 35, 37, 26, 23) m2.prior <- c(215, 218, 137, 62, 36, 16, 13, 15) m1.current <- c(46, 52, 44, 54, 38, 39, 23, 52) m2.current <- c(290, 211, 134, 91, 53, 42, 23, 32) m1.total <- m1.prior + m1.current m2.total <- m2.prior + m2.current logpost.retin <- function(beta, z, m1, m2 , beta0 = rep(0.0, 3), W = diag(1e+6, nrow = 3)) { X <- cbind(1, z, z^2) beta <- as.numeric(beta) Xbeta <- X %*% beta log.prior <- -0.5 * t(beta - beta0) %*% solve(W) %*% (beta - beta0) log.like <- -sum((m1 + m2) * log(1 + exp(-Xbeta)) + m2 * Xbeta) log.post <- log.prior + log.like return (log.post) } nsmp <- 1000 beta.ini <- c(0.0, 0.0, 0.0) beta.smp <- MfU.Sample.Run(beta.ini, logpost.retin, nsmp = nsmp , z = z, m1 = m1.total, m2 = m2.total) summary(beta.smp)
z <- c(1, 4, 7, 10, 13, 16, 19, 24) m1.prior <- c(17, 26, 39, 27, 35, 37, 26, 23) m2.prior <- c(215, 218, 137, 62, 36, 16, 13, 15) m1.current <- c(46, 52, 44, 54, 38, 39, 23, 52) m2.current <- c(290, 211, 134, 91, 53, 42, 23, 32) m1.total <- m1.prior + m1.current m2.total <- m2.prior + m2.current logpost.retin <- function(beta, z, m1, m2 , beta0 = rep(0.0, 3), W = diag(1e+6, nrow = 3)) { X <- cbind(1, z, z^2) beta <- as.numeric(beta) Xbeta <- X %*% beta log.prior <- -0.5 * t(beta - beta0) %*% solve(W) %*% (beta - beta0) log.like <- -sum((m1 + m2) * log(1 + exp(-Xbeta)) + m2 * Xbeta) log.post <- log.prior + log.like return (log.post) } nsmp <- 1000 beta.ini <- c(0.0, 0.0, 0.0) beta.smp <- MfU.Sample.Run(beta.ini, logpost.retin, nsmp = nsmp , z = z, m1 = m1.total, m2 = m2.total) summary(beta.smp)
Method for sample-based prediction using the output of MfU.Sample.Run
.
## S3 method for class 'MfU' predict(object, fpred, ...) ## S3 method for class 'predict.MfU' summary(object, start = round(nrow(object)/2) + 1 , end = nrow(object), thin = 1 , quantiles = c(0.025, 0.5, 0.975), ...) ## S3 method for class 'summary.predict.MfU' print(x, n = 6L, ...)
## S3 method for class 'MfU' predict(object, fpred, ...) ## S3 method for class 'predict.MfU' summary(object, start = round(nrow(object)/2) + 1 , end = nrow(object), thin = 1 , quantiles = c(0.025, 0.5, 0.975), ...) ## S3 method for class 'summary.predict.MfU' print(x, n = 6L, ...)
object |
Object of class "MfU" (output of |
fpred |
Prediction function, accepting a single value for the state vector and producing a vector of outputs. |
start |
Which iteration to start from for calculating sample statistics. |
end |
Last iteration to use for calculating sample statistics. Defaults to last iteration. |
thin |
One out of |
quantiles |
Values for which sample-based quantiles are calculated. |
x |
An object of class "summary.predict.MfU". |
n |
Number of rows of prediction matrix to print. |
... |
Arguments passed to/from other functions. |
predict.MfU
produces a matrix with number of rows equal to the length of prediction vector produces by fpred
. Its numnber of columns is equal to the number of samples used within the user-specified range, and after thinning (if any). summary.predict.MfU
produces sample-based prediction mean, standard deviation, quantiles, and effective sample size.
Alireza S. Mahani, Mansour T.A. Sharabiani
Mahani A.S and Sharabiani M.T.A. (2017). Multivariate-From-Univariate MCMC Sampler: The R Package MfUSampler. Journal of Statistical Software, Code Snippets, 78(1), 1-22. doi:10.18637/jss.v078.c01
Methods for summarizing and plotting the output of MfU.Sample.Run
.
## S3 method for class 'MfU' summary(object, start = round(nrow(object)/2) + 1 , end = nrow(object), thin = 1 , quantiles = c(0.025, 0.5, 0.975), ...) ## S3 method for class 'summary.MfU' print(x, ...) ## S3 method for class 'MfU' plot(x, start = round(nrow(x)/2) + 1 , end = nrow(x), thin = 1, ...)
## S3 method for class 'MfU' summary(object, start = round(nrow(object)/2) + 1 , end = nrow(object), thin = 1 , quantiles = c(0.025, 0.5, 0.975), ...) ## S3 method for class 'summary.MfU' print(x, ...) ## S3 method for class 'MfU' plot(x, start = round(nrow(x)/2) + 1 , end = nrow(x), thin = 1, ...)
object |
An object of class "MfU", typically the output of |
start |
Which iteration to start from for calculating sample statistics. |
end |
Last iteration to use for calculating sample statistics. Defaults to last iteration. |
thin |
One out of |
quantiles |
Values for which sample-based quantiles are calculated. |
... |
Arguments passed to |
x |
For |
These functions are thin wrappers around summary.mcmc
and plot.mcmc
. See coda package documentation for details.
Alireza S. Mahani, Mansour T.A. Sharabiani
Mahani A.S and Sharabiani M.T.A. (2017). Multivariate-From-Univariate MCMC Sampler: The R Package MfUSampler. Journal of Statistical Software, Code Snippets, 78(1), 1-22. doi:10.18637/jss.v078.c01