Package: EnsembleBase 1.0.2

EnsembleBase: Extensible Package for Parallel, Batch Training of Base Learners for Ensemble Modeling

Extensible S4 classes and methods for batch training of regression and classification algorithms such as Random Forest, Gradient Boosting Machine, Neural Network, Support Vector Machines, K-Nearest Neighbors, Penalized Regression (L1/L2), and Bayesian Additive Regression Trees. These algorithms constitute a set of 'base learners', which can subsequently be combined together to form ensemble predictions. This package provides cross-validation wrappers to allow for downstream application of ensemble integration techniques, including best-error selection. All base learner estimation objects are retained, allowing for repeated prediction calls without the need for re-training. For large problems, an option is provided to save estimation objects to disk, along with prediction methods that utilize these objects. This allows users to train and predict with large ensembles of base learners without being constrained by system RAM.

Authors:Alireza S. Mahani, Mansour T.A. Sharabiani

EnsembleBase_1.0.2.tar.gz
EnsembleBase_1.0.2.zip(r-4.5)EnsembleBase_1.0.2.zip(r-4.4)EnsembleBase_1.0.2.zip(r-4.3)
EnsembleBase_1.0.2.tgz(r-4.4-any)EnsembleBase_1.0.2.tgz(r-4.3-any)
EnsembleBase_1.0.2.tar.gz(r-4.5-noble)EnsembleBase_1.0.2.tar.gz(r-4.4-noble)
EnsembleBase_1.0.2.tgz(r-4.4-emscripten)EnsembleBase_1.0.2.tgz(r-4.3-emscripten)
EnsembleBase.pdf |EnsembleBase.html
EnsembleBase/json (API)

# Install 'EnsembleBase' in R:
install.packages('EnsembleBase', repos = c('https://asmahani.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openjdk– OpenJDK Java runtime, using Hotspot JIT
Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openjdk

1.95 score 3 packages 5 scripts 213 downloads 15 exports 36 dependencies

Last updated 8 years agofrom:c9a98b3fe0. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 03 2024
R-4.5-winNOTEDec 03 2024
R-4.5-linuxNOTEDec 03 2024
R-4.4-winNOTEDec 03 2024
R-4.4-macNOTEDec 03 2024
R-4.3-winOKDec 03 2024
R-4.3-macOKDec 03 2024

Exports:BaseLearner.Fitextract.baselearner.namegenerate.partitiongenerate.partitionsload.objectmake.configsmake.instancesRegression.Batch.FitRegression.CV.Batch.FitRegression.CV.Fitregression.extract.responseRegression.Integrator.FitRegression.Select.Fitrmse.errorvalidate

Dependencies:bartMachinebartMachineJARsclassclicodetoolscpp11digestdoParalleldoRNGe1071foreachgbmglmnetglueigraphiteratorsitertoolskknnlatticelifecyclemagrittrMASSMatrixmissForestnnetpkgconfigproxyrandomForestRcppRcppEigenrJavarlangrngtoolsshapesurvivalvctrs

Readme and manuals

Help Manual

Help pageTopics
Classes '"KNN.Regression.Config"', '"NNET.Regression.Config"', '"RF.Regression.Config"', '"SVM.Regression.Config"', '"GBM.Regression.Config"', '"PENREG.Regression.Config"', '"BART.Regression.Config"'BART.Regression.Config-class GBM.Regression.Config-class KNN.Regression.Config-class NNET.Regression.Config-class PENREG.Regression.Config-class RF.Regression.Config-class SVM.Regression.Config-class
Classes '"KNN.Regression.FitObj"', '"NNET.Regression.FitObj"', '"RF.Regression.FitObj"', '"SVM.Regression.FitObj"', '"GBM.Regression.FitObj"', '"PENREG.Regression.FitObj"', '"BART.Regression.FitObj"'BART.Regression.FitObj-class GBM.Regression.FitObj-class KNN.Regression.FitObj-class NNET.Regression.FitObj-class PENREG.Regression.FitObj-class RF.Regression.FitObj-class SVM.Regression.FitObj-class
Classes '"BaseLearner.Batch.FitObj"' and '"Regression.Batch.FitObj"'BaseLearner.Batch.FitObj-class Regression.Batch.FitObj-class
Classes '"BaseLearner.Config"', '"Regression.Config"'BaseLearner.Config-class Regression.Config-class
Classes '"BaseLearner.CV.Batch.FitObj"' and '"Regression.CV.Batch.FitObj"'BaseLearner.CV.Batch.FitObj-class Regression.CV.Batch.FitObj-class
Classes '"BaseLearner.CV.FitObj"' and '"Regression.CV.FitObj"'BaseLearner.CV.FitObj-class Regression.CV.FitObj-class
Generic S4 Method for Fitting Base LearnersBaseLearner.Fit BaseLearner.Fit,BART.Regression.Config-method BaseLearner.Fit,GBM.Regression.Config-method BaseLearner.Fit,KNN.Regression.Config-method BaseLearner.Fit,NNET.Regression.Config-method BaseLearner.Fit,PENREG.Regression.Config-method BaseLearner.Fit,RF.Regression.Config-method BaseLearner.Fit,SVM.Regression.Config-method BaseLearner.Fit-methods
Classes '"BaseLearner.FitObj"' and '"Regression.FitObj"'BaseLearner.FitObj-class Regression.FitObj-class
Classes '"Instance"' and '"Instance.List"'Instance-class Instance.List-class
Helper Functions for Manipulating Base Learner Configurationsextract.baselearner.name make.configs make.configs.bart.regression make.configs.gbm.regression make.configs.knn.regression make.configs.nnet.regression make.configs.penreg.regression make.configs.rf.regression make.configs.svm.regression make.instances
Class '"OptionalInteger"'OptionalCharacter-class OptionalInteger-class OptionalNumeric-class
Batch Training, Prediction and Diagnostics of Regression Base Learnersplot.Regression.Batch.FitObj predict.Regression.Batch.FitObj Regression.Batch.Fit
CV Batch Training and Diagnostics of Regression Base Learnersplot.Regression.CV.Batch.FitObj predict.Regression.CV.Batch.FitObj Regression.CV.Batch.Fit
Cross-Validated Training and Prediction of Regression Base Learnerspredict.Regression.CV.FitObj Regression.CV.Fit
Classes '"Regression.Integrator.Config"', '"Regression.Select.Config"', '"Regression.Integrator.FitObj"', '"Regression.Select.FitObj"'Regression.Integrator.Config-class Regression.Integrator.FitObj-class Regression.Select.Config-class Regression.Select.FitObj-class
Generic Integrator Methods in Package 'EnsembleBase'Regression.Integrator.Fit Regression.Integrator.Fit-methods Regression.Select.Fit Regression.Select.Fit-methods
Class '"RegressionEstObj"'RegressionEstObj-class
Class '"RegressionSelectPred"'RegressionSelectPred-class
Servo Data Setservo
Utility Functions in EnsembleBase Packagegenerate.partition generate.partitions load.object regression.extract.response rmse.error
~~ Methods for Function 'validate' in Package 'EnsembleBase' ~~validate validate,Regression.Batch.FitObj-method validate,Regression.CV.Batch.FitObj-method validate-methods