Package: BSGW 0.9.4

BSGW: Bayesian Survival Model with Lasso Shrinkage Using Generalized Weibull Regression

Bayesian survival model using Weibull regression on both scale and shape parameters. Dependence of shape parameter on covariates permits deviation from proportional-hazard assumption, leading to dynamic - i.e. non-constant with time - hazard ratios between subjects. Bayesian Lasso shrinkage in the form of two Laplace priors - one for scale and one for shape coefficients - allows for many covariates to be included. Cross-validation helper functions can be used to tune the shrinkage parameters. Monte Carlo Markov Chain (MCMC) sampling using a Gibbs wrapper around Radford Neal's univariate slice sampler (R package MfUSampler) is used for coefficient estimation.

Authors:Alireza S. Mahani, Mansour T.A. Sharabiani

BSGW_0.9.4.tar.gz
BSGW_0.9.4.zip(r-4.5)BSGW_0.9.4.zip(r-4.4)BSGW_0.9.4.zip(r-4.3)
BSGW_0.9.4.tgz(r-4.4-any)BSGW_0.9.4.tgz(r-4.3-any)
BSGW_0.9.4.tar.gz(r-4.5-noble)BSGW_0.9.4.tar.gz(r-4.4-noble)
BSGW_0.9.4.tgz(r-4.4-emscripten)BSGW_0.9.4.tgz(r-4.3-emscripten)
BSGW.pdf |BSGW.html
BSGW/json (API)

# Install 'BSGW' in R:
install.packages('BSGW', repos = c('https://asmahani.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 1 stars 8 scripts 276 downloads 6 exports 11 dependencies

Last updated 2 years agofrom:d130541a3f. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 13 2024
R-4.5-winOKNov 13 2024
R-4.5-linuxOKNov 13 2024
R-4.4-winOKNov 13 2024
R-4.4-macOKNov 13 2024
R-4.3-winOKNov 13 2024
R-4.3-macOKNov 13 2024

Exports:bsgwbsgw.controlbsgw.crossvalbsgw.crossval.wrapperbsgw.generate.foldsbsgw.generate.folds.eventbalanced

Dependencies:arscodacodetoolsdlmdoParallelforeachiteratorslatticeMatrixMfUSamplersurvival